
Approximating Matrix Product States

with Machine Learning

1

APPROXIMATING MATRIX PRODUCT STATES WITH MACHINE

LEARNING

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Bachelor of Arts

in

Physics

by

Sam Greydanus

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 31, 2017

Examining Committee:

James Whitfield, Chair

Miles Blencowe

Lorenza Viola

Abstract

Obtaining compressed representations of entangled systems is an important

open problem in quantum mechanics. The Density Matrix Renormalization Group

(DMRG) algorithm introduced by S. R. White in 1992 [35] has been successful at

solving one-dimensional cases but does not generalize well to arbitrary dimen-

sions. We explore the possibility of using neural network models to solve ground

state problems in place of DMRG. In experiments on a system of four spin-1
2

par-

ticles interacting by the 1D Heisenberg Hamiltonian, we show that this approach

can approximate ground state energies and Matrix Product State coefficients to a

mean percent error of less than 5%. Furthermore, we use deep learning to obtain

MPS coefficients for low-lying energy states directly from the system Hamiltonian.

Our findings suggest that neural networks, which generalize well to arbitrary di-

mensions, could be useful tools for solving 2D and 3D systems where DMRG fails.

ii

Acknowledgements

First, a heartfelt thanks to Professor James Whitfield for advising me. He spent

countless hours helping me grasp difficult concepts. Thanks to him, I learned to

see the subatomic world with new clarity. I always left his office having learned

something interesting.

I thank Professor Kristina Lynch for guiding me through the technical aspects

of completing a thesis. I thank my friends for keeping me sane throughout the

stressful and often exhausting process. Finally, I thank my parents, James and

Judy Greydanus, for supported me in all my endeavors, be they raising the perfect

show pig or writing an honors thesis about quantum entanglement.

iii

Contents

Abstract . ii

Preface . iii

1 Introduction 1

1.1 Statement of thesis . 1

1.2 Background . 2

1.3 Overview . 3

2 Entanglement 4

2.1 Definition . 4

2.2 The Einstein-Podolsky-Rosen (EPR) Paradox 5

2.3 Two spin-1
2

particles . 6

2.4 Formal aspects . 7

2.4.1 Tensor product . 7

2.4.2 The curse of dimensionality . 9

3 Matrix Product States 11

3.1 The MPS Ansatz . 11

3.2 Simple examples . 12

iv

3.3 Expectation values . 13

4 Density Matrix Renormalization Group 15

4.1 The DMRG algorithm . 15

4.1.1 Formalism . 16

4.2 Results . 20

4.2.1 Infinite algorithm . 20

4.2.2 Finite algorithm . 23

4.3 DMRG in the MPS picture . 25

5 Measuring Entanglement with Neural Networks 26

5.1 Previous work . 27

5.2 Neural networks . 28

5.2.1 Formalism . 28

5.3 Results . 32

5.3.1 Training examples . 32

5.3.2 Tasks . 33

5.3.3 Task 1: approximate Hsys → E0 35

5.3.4 Task 2: approximate ψ → ψMPS 39

5.3.5 Task 3: approximate Hsys → ψ0 44

5.4 Discussion . 48

6 Closing remarks 50

Appendix A: Linear algebra 52

6.1 Singular value decomposition . 52

v

6.2 Schmidt decomposition . 54

Appendix B: Pseudocode 55

6.3 Finite DMRG . 55

6.4 Neural network . 56

vi

Chapter 1

Introduction

1.1 Statement of thesis

Simulating entangled quantum systems is difficult because the cost of simula-

tion grows as O(dN) for N sites with d states each. Many interesting entangled

systems have low Schmidt rank1; algorithms such as the Density Matrix Renor-

malization Group (DMRG) can simulate these systems in O(Nm3) time where m

is a used-defined upper bound on the dimensionality of the system. DMRG, and

algorithms like it, do not generalize well to 2D and 3D systems.

This thesis explores the possibility of using deep learning algorithms to per-

form the same simulations, also inO(Nm3) time. The generality of the deep learn-

ing approach means that it can extend naturally to 2D and 3D systems.

In experiments on a four-particle, spin-1
2

system, we used the deep learning

approach to calculate ground state energies and Matrix Product State (MPS) coef-

ficients to a mean percent error of less than 5%. We also had success in estimating

1see Appendix A.

1

1.2 Background

the MPS coefficients of very low-energy states directly from system Hamiltonians.

1.2 Background

Quantum theory is notorious for violating classical intuitions. Indeed, well af-

ter its initial formulation in the 1920’s, physicists questioned its legitimacy. The

Einstein-Podolsky-Rosen (EPR) paradox uncovered one its most bizarre conse-

quences: entanglement. Though this ”spooky action at a distance” was initially

meant to discredit quantum theory, it soon grew into a field of its own [9].

Entanglement tells us that we cannot describe the behavior of one particle in an

entangled system without first describing the entire system. It is an inherent prop-

erty of the quantum mechanics; we would not have quantum devices without it [8].

However, it can be frustrating from a theoretical standpoint. It complicates even

the simplest calculations and makes predicting the behaviors of quantum systems

an immense challenge. To better understand how entangled systems behave, re-

searchers usually build computer simulations of entangled systems to study their

properties. The ability to accurately simulate entangled systems will help us build

the next generation of quantum computers, clocks, and ciphers.

Deep learning represents the state of the art in computer vision, translation,

and artificial intelligence [19, 37, 21]. It enables computers to represent the world

as a nested hierarchy of concepts, with each concept defined in relation to simpler

concepts, and more abstract representations computed in terms of less abstract

ones. This property is what enables deep learning to perform complex nonlinear

transformations on high-dimensional data [11].

Researchers have used deep learning to accelerate drug discovery, identify ex-

2

1.3 Overview

otic particles in high-energy physics data, simulate fluid turbulence, shape mi-

crofluid flow, and predict the quantum mechanical properties of small organic

molecules to within chemical accuracy [25, 3, 30, 28, 10]. These examples illustrate

how deep learning has already become a valuable tool for scientific research.

1.3 Overview

Chapters 2 and 3 will review entanglement and the techniques physicists have

developed to study it. We will provide simple physical examples of entangled

systems, introduce useful formalism such as the tensor product and the Matrix

Product State (MPS), and show how these mathematical objects can describe the

properties of entangled systems efficiently.

Chapter 4 will describe the Density Matrix Renormalization Group (DMRG) al-

gorithm which is the standard way of obtaining MPS coefficients for an entangled

system. With the goal of demonstrating the strengths and weaknesses of this al-

gorithm, we will begin with a mathematical formalism, then provide pseudocode,

and finally show results from an implementation of DMRG in Python.

In Chapter 5 we explore how deep learning can improve our understanding

of entangled systems. After introducing formalism for multilayer neural network

models, we will use them to solve for ground state energies and eigenstates of

entangled systems and obtain MPS coefficients. Finally, in Chapter 6 we provide

closing remarks and discuss what place, if any, deep learning has as a tool for

approximating quantum systems.

3

Chapter 2

Entanglement

2.1 Definition

A system is said to be entangled when its components cannot be described

independently of each other. In other words, knowledge of the whole system is

necessary to understand the parts. We use the vague words system and components

intentionally here. In quantum mechanics, the components are usually particles

(such as electrons) and the system is usually several particles with coupled spins.

Yet the formalism applies to a much broader range of problems. Consider the red-

blue stick example.

Imagine a stick with one red end and one blue end. Without looking at the

ends, break the stick into two pieces and toss one end aside at random. Now, if

you look at the remaining piece and it is red, you can immediately reason that the

end you tossed aside was blue. In this example, the two pieces of the red-blue stick

are said to be classically correlated. Quantum entanglement is similar to classical

correlation, but stronger. Consider the following modification:

4

2.2 The Einstein-Podolsky-Rosen (EPR) Paradox

What if both ends of the stick are blue? Without looking at either end, you

could reason that the piece you tossed aside was blue. Since looking at the piece in

your hand does not tell you anything new about the color of the piece you tossed

aside, this system is not entangled.

The red-blue stick is an example of entanglement in the classical (statistical)

sense. A quantum red-blue stick would have the same amount of red paint and

blue paint, but each end would start out with both some mixture - or superposition

- of red and blue. When you throw away one end and observe the color of the other,

its color would become either red or blue as you observed it.

2.2 The Einstein-Podolsky-Rosen (EPR) Paradox

The suspicious reader might point out that the quantum red-blue stick example

violates relativity. When you observe the color of the piece in your hand to be, say,

red, the color of the piece you tossed aside must change to blue instantaneously.

Yet relativity says that nothing can travel faster than the speed of light, not even

information.

This is the heart of the Einstein-Podolsky-Rosen (EPR) paradox [9]. It is a good

example of how quantum entanglement violates classical intuitions. To resolve the

EPR paradox, one must avoid working in the reference frame of a single piece of

the stick and instead consider the system as a whole. Repeating the experiment

many times, you will notice a correlation between the colors of the two pieces, but

this correlation will appear to be a property of the full system, rather than one

piece acting upon the other.

The EPR paradox is an important introduction to quantum entanglement be-

5

2.3 Two spin-1
2

particles

cause it shows why one must model an entangled system as a whole. Much of the

formalism that follows is based on the idea that each component should be treated

on an equal footing.

2.3 Two spin-1
2 particles

The simplest physical example of entanglement is a system of two spin-1
2

par-

ticles (e.g. electrons). Each electron can have a spin of either +1
2

(↑) or -1
2

(↓). The

combined system has four states: {↑↑, ↑↓, ↓↑, ↓↓}.

Since electrons are indistinguishable, we must always superimpose ↑↓ with ↓↑

(as in equations 2.2 and 2.4). This gives us four possible states: a triplet and a

singlet, in terms of angular momentum number Sz. In |S, Sz〉 notation,

|1, 1〉 =↑↑ triplet (2.1)

|1, 0〉 =
1√
2

(↑↓ + ↓↑) triplet (2.2)

|1,−1〉 =↓↓ triplet (2.3)

|0, 0〉 =
1√
2

(↑↓ − ↓↑) singlet (2.4)

In the system above, only equations 2.2 and 2.4 represent entangled states. The

others are product states (all up or all down) because we can know the state of one

subsystem without knowledge, and without affecting, the state of the other.

6

2.4 Formal aspects

2.4 Formal aspects

From now on, I will refer to the components of an entangled system as sites (I

will use N to denote their total number) and the set of values available to each site

as states (d).

How can we represent systems with an arbitrary number of sites? How can

we represent sites with an arbitrary number of states? In order to describe entan-

glement in the general case, we need to introduce a powerful operation called the

tensor product.

2.4.1 Tensor product

The tensor product is denoted by the ⊗ symbol and operates on two matrices

to produce a third.

A[m×n] ⊗B[p×q] = C [mp×nq] (2.5)

For example, if A and B are both 2× 2 matrices as shown

A[2×2] =

 A11 A12

A21 A22

 B[2×2] =

 B11 B12

B21 B22

 (2.6)

7

2.4 Formal aspects

Then the tensor product looks like

A[2×2] ⊗B[2×2] = C [4×4] (2.7)

=

A11

 B11 B12

B21 B22

 A12

 B11 B12

B21 B22

A21

 B11 B12

B21 B22

 A22

 B11 B12

B21 B22

(2.8)

=

A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

(2.9)

Now, for two sites
∣∣ψdχ=1

〉
and

∣∣ψdχ=2

〉
where each has d states, we can represent

the full system with equation 2.10.

|ψsys〉 =
∣∣ψdχ=1

〉
⊗
∣∣ψdχ=2

〉
(2.10)

For example, if
∣∣ψd=2

χ=1

〉
=

 1

0

 and
∣∣ψd=2

χ=2

〉
=

 0

1

, then the system can be

described by equation 2.11.

|ψsys〉 =

0

1

0

0

(2.11)

We can combine operators, such as the Hamiltonians Hχ=1 and Hχ=2 of the two

8

2.4 Formal aspects

sites, in the same way.

2.4.2 The curse of dimensionality

The curse of dimensionality refers to a set of problems which arise when work-

ing with very high dimensional data. With the tensor product, we can show that

the dimension of the system scales exponentially with the number of sites. It is not

long before the curse of dimensionality severely limits our ability to compute an

entangled system’s properties.

Imagine we want to compute the ground state, ψ0 of a two-particle system.

The state ψ0 is given by the eigenvector, λ0 = E0 that corresponds to the smallest

eigenvalue - and lowest energy - of the system Hamiltonian, Hsys. Since Hsys =

H1 ⊗ 1 + 1⊗H2 +H12 (where H12 is the interaction Hamiltonian), it is just a 4× 4

matrix and can be easily diagonalized.

Now consider a system of 21 spin-1
2

particles. The dimensionality of Hsys be-

comes 221 × 221, or 4194304× 4194304; it takes a sparse Hermitian eigensolver run-

ning on a 2014 MacBook a full minute to find the ground state (see Figure 2.1).

Systems for which d > 30 are not practical to compute. Simply saving a sparse Hsys

for d = 40 fills 4TB of memory!

9

2.4 Formal aspects

12 13 14 15 16 17 18 19 20
Number of sites (N)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Co
m

pu
te

 ti
m

e
(s

ec
on

ds
)

Scaling of eigsh() computation time

Figure 2.1: Runtimes of a sparse Hermitian eigensolver on a 2014 MacBook. Error
bars denote one standard deviation.

In order to simulate larger entangled systems, we need a representation that

does not scale exponentially with system size: enter Matrix Product States.

10

Chapter 3

Matrix Product States

3.1 The MPS Ansatz

Consider a 1D system of entangled states such as the one on the right side of

Figure 3.1. Since the system is entangled, it is impossible to decompose it into a

tensor product of two subspaces (as expressed by the inequality |ψ〉 6= |ψ〉A⊗|ψ〉B).

However, when the bond dimension (Schmidt rank) is low, the system on the left

side of Figure 3.1 is a good approximation. This system can be expressed as a

product state, so it is a far more efficient representation.

Figure 3.1: The MPS ansatz, taken from [16].

11

3.2 Simple examples

Matrix Product States (MPS) are a generalization of this idea. Using a series of

N − 1 Schmidt decompositions1, one can re-express the dN coefficients of a state ψ

in terms of about (2d2 + d)N parameters [8]. Letting d be the local dimension of a

given site and A[i]si be the matrix of MPS coefficients when the i-th site is in state

si in range=(1, d). The matrix product state is then defined by equation 3.1.

|ψmps〉 =
d∑

s1,...,sN=1

Tr(A[1]s1A[2]s2 . . . A[N]sN) |s1, . . . sN〉 (3.1)

Thus, we will define d differentA[i]si matrices for each site i. Each of these matrices

has dimension [m × m], where m is defined by the user. These matrices contain

coefficients which, when multiplied and traced over, reconstruct the full state, ψ.

3.2 Simple examples

To obtain a better intuition of how MPS coefficients combine to reconstruct a

state ψ, consider these example MPS states from Eckholt (2005) [8].

Pure State |000 . . .0〉With dimension d = 1, we have the 1× 1 matrices:

A[i]0 = 1 A[i]1 = 0 (3.2)

GHZ State |000 . . .0〉+ |111 . . .1〉With dimension d = 2, we have the 2× 2 matri-

1See Appendix A for an explanation of Schmidt decompositions.

12

3.3 Expectation values

ces (see Figure 5.7b for a visual representation):

A[i]0 =

1 0

0 0

 A[i]1 =

0 0

0 1

 (3.3)

W State |100〉+ |010〉+ |001〉With dimension d = 3, we have the 3× 3:

A[1]0 =

1 0 0

0 1 0

0 0 0

 A[2]0 =

1 0 0

0 0 0

0 0 1

A[3]0 =

0 0 0

0 1 0

0 0 1

A[1]1 =

0 0 0

0 0 0

0 0 1

 A[2]1 =

0 0 0

0 1 0

0 0 0

A[3]1 =

1 0 0

0 0 0

0 0 0

3.3 Expectation values

How does MPS speed up computations on entangled systems? Imagine that

we want to compute the expectation value of operator O for a d = 2 system. The

operator for the full system would be

O =(O1 ⊗ 1⊗ 1...⊗ 1)

+ (1⊗O2 ⊗ 1...⊗ 1)

+ (1⊗ 1⊗ 1...⊗ON)

Now, define EOi
as the transfer matrix which corresponds to local operator Oi:

13

3.3 Expectation values

EOi
:=

d∑
si,s′i=1

〈s′i|Oi |si〉
(
A[i]si ⊗ (A[i]s

′
i)†
)

(3.4)

With these definitions, Eckholt (2005) [8] showed that the expectation value in

the MPS picture is given by equation 3.5.

〈ψmps|O |ψmps〉 = Tr[EO1 ...EON
] (3.5)

In other words, computing the expectation value of a system in the MPS rep-

resentation corresponds to multiplying a set of transfer matrices and tracing the

result. This computation scales as O(d2m6N) where m is a user-defined parameter

that limits the size of the A matrices and N is the total number of sites.

Computing the expectation value of an observable using the full system Hamil-

tonian corresponds to multiplying a vector ψsys of dimension dN with a matrix. The

computational complexity of this operation is O(d2N).

The MPS approximation is valid for 1D quantum systems (with low Schmidt

rank) and that it offers an immense speedup for tasks such as computing the ex-

pectation values. However, we have not yet seen how to calculate the coefficients

of the A matrices. In the next section, I will introduce one method for computing

these coefficients, the Density Matrix Renormalization Group (DMRG) algorithm.

14

Chapter 4

Density Matrix Renormalization

Group

4.1 The DMRG algorithm

The idea behind the Density Matrix Renormalization Group (DMRG) algorithm

is to find accurate approximations of the ground state and low-lying energies of

interacting quantum systems [35]. The algorithm is a generalization of the Wilson

numerical renormalization group [36]. Both techniques are useful because they can

integrate out unimportant degrees of freedom by applying a succession of renor-

malization group transformations to a system. In other words, only them principal

eigenvectors of a subsystem ψN=l are used to construct subsystem ψN=l+1 in each

step of DMRG (where m is a user-defined value).

15

4.1 The DMRG algorithm

4.1.1 Formalism

Consider a 1D system of particles with local interactions. In the DMRG picture,

we start by treating the system as a collection of separate pieces – free sites – and

slowly combine them to form a block. When the block contains the entire system,

we can use it to calculate ground states, ground state energies, and expectation

values of the system. The free sites are particles that have not yet been added to

Hsys.

Base case. The DMRG algorithm begins with a block composed of a single site

as shown in Figure 4.1.

Figure 4.1: DMRG begins with a block of size N = 1

Enlarge. The next step of DMRG is to enlarge the system by adding an adjacent

free site to the block. If HB is the Hamiltonian of the block, HS is the Hamiltonian

of the free site, and HBS is the interaction Hamiltonian between the free site and

the block, then the Hamiltonian of the enlarged block will be

HE = HB +HS +HBS (4.1)

where the dimension of HE is a factor of d larger than the dimension of HB

(where d is the dimension of HS). Figure 4.2 shows this step.

16

4.1 The DMRG algorithm

Figure 4.2: The enlarge step consists of adding a free site to the block.

Build Hsuper. To compute an accurate ground state, the next step is to build

a superblock Hamiltonian, Hsuper, by reflecting the enlarged block and merging the

two systems as shown in Figure 4.3 and equation 4.2, creating a block with 2(l+ 1)

sites.

Hsuper = HE +HE′ +HSS′ (4.2)

Figure 4.3: Building Hsuper, as given by equation 4.2.

Decompose Hsuper. This step of DMRG solves for the ground state energy of

the block by diagonalizing Hsuper (which is of dimension [2md× 2md]) and saving

the smallest eigenvalue, E0, and its corresponding eigenvector, ψ0. Equation 4.4

describes this process. In practice, one can use a sparse Hermitian eigensolver

such as scipy’s eigsh() function [31].

UΛU † = Hsuper where λi = Λii (4.3)

17

4.1 The DMRG algorithm

keep E0 = min(λ1, λ2...λN), |ψE0〉 (4.4)

The reduced density and transformation matrices. The density matrix is a

partial trace over ψE0 as shown in equation 4.5. In practice, this can be accom-

plished by reshaping ψE0 and taking the dot product of the result with its complex

conjugate 1.

ρ
[md×md]
N=l+1 = TrR |ψE0〉 〈ψE0| (4.5)

The reduced density matrix is useful for constructing the transformation ma-

trix, O, which DMRG uses to reduce the dimensionality of the enlarged block

while preserving as much information as possible about the system’s lowest en-

ergy states.

The transformation matrix is constructed from the largest m eigenvectors of

ρN=l+1, where m is a user-defined value which places an upper bound on the di-

mensionality of ψB and HB. Large values of m produce more accurate results but

are more expensive to compute. Small values of m produce less accurate results

and are more efficient.

The construction of O[md×m] looks like

UΛU † = ρ
[md×md]
N=l+1 where λi = Λii (4.6)

(λ′1, λ
′
2...λ

′
(md)) = sort descending(λ1, λ2...λ(md)) (4.7)

O[md×m] =
[
uλ′1 : uλ′2 : · · · : uλ′m

]
(4.8)

(4.9)

1Available at https://github.com/greydanus/psi0nn.

18

4.1 The DMRG algorithm

where uλ′i is the eigenvector which corresponds to eigenvalue λ′i.

Rotate and truncate. Having constructed the transformation matrix, all that

remains is to transform every operator SE of the enlarged block into a new basis of

dimension m (equation 4.10

(SE)[m×m] = (O†)[m×md](SE)[md×md](O)[md×m] (4.10)

Estimate error. Transforming the DMRG block into a smaller-dimensional space

destroys information if the eigenvalues λi of ρ[md×md]N=l+1 are nonzero for i > m. A sim-

ple metric for the truncation error the sum of these eigenvalues (equation 4.11

ε :=
∑
i>m

λi = 1−
∑
i<m

λi (4.11)

.

Putting it together. Everything to this point constitutes a single step of DMRG.

Having enlarged the block and transformed it to a new basis, the next step is to

enlarge the block with a second free site and repeat the steps described above.

There are two variants of DMRG: infinite and finite. Infinite DMRG consists of

simply repeating the basic DMRG step until the superblock Hamiltonian contains

L free sites, where the user chooses L. Finite DMRG involves performing addi-

tional computations on the block once it reaches size L, and generally makes final

results more accurate. For the details of finite DMRG, refer to Subsection 4.2.2.

Comparing runtimes for the DMRG approach with exact diagonalization in

Figure 4.4, we see that DMRG is much more efficient. We used a 1D chain of spin-

1
2

particles interacting via the Heisenberg Hamiltonian.

19

4.2 Results

12 13 14 15 16 17 18 19 20
Number of sites (N)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Co
m

pu
te

 ti
m

e
(s

ec
on

ds
)

Scaling of eigsh() computation time

(a) Exponential scaling in d for exact diago-
nalization.

20 40 60 80 100
Number of sites (N)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
m

pu
te

 ti
m

e
(s

ec
on

ds
)

Scaling of DMRG computation time (m = 20)

(b) Linear scaling in d for DMRG.

Figure 4.4: Scaling of runtime with number of sites d (block size), computed on a
2014 MacBook. DMRG can quickly compute the ground state of a d = 100 system
whereas exact diagonalization cannot.

Pseudocode for infinite DMRG is provided in Section 6.2

4.2 Results

4.2.1 Infinite algorithm

We implemented the infinite DMRG algorithm in Python2. For a case study, we

used the Heisenberg Hamiltonian with coupling terms J = Jz = 1 and local fields

set to zero.

HHeis = Jz(S
z
1 ⊗ Sz2) +

J

2

(
S+
1 ⊗ S−2 + S−1 ⊗ S+

2

)
(4.12)

We used a total of L = 16 sites and tested the algorithm’s approximations of
2Available at https://github.com/greydanus/psi0nn.

20

4.2 Results

E0 for m = {4, 6, 8, 10, 12} against a ground truth E0 computed using exact diago-

nalization. We chose a relatively small system of 16 sites because it allowed us to

compare the results directly against exact diagonalization.

Figure 4.5a shows convergence of infinite DMRG for the various values of m

and Figure 4.5b is a closer view of DMRG steps for the largest block sizes. Es-

timates of E0 begin to diverge for large block sizes in Figure 4.5b as the dimen-

sionality of the physical system grows much larger than the user-defined bond

dimension m.

21

4.2 Results

4 6 8 10 12 14 16
Block size (L)

0.430

0.425

0.420

0.415

0.410

0.405

Gr
ou

nd
 st

at
e

en
er

gy
 (E

0)
Infinite DMRG E0 estimates

m = 4
m = 6
m = 8

m = 10
m = 12
exact

(a) Infinite DMRG, full space.

10 11 12 13 14 15 16
Block size (L)

0.432

0.430

0.428

0.426

Gr
ou

nd
 st

at
e

en
er

gy
 (E

0)

Infinite DMRG E0 estimates (near convergence)
m = 4
m = 6
m = 8

m = 10
m = 12
exact

(b) Infinite DMRG, near convergence.

Figure 4.5: Convergence of the infinite DMRG algorithm to the ground state energy
E0 of a 16-site Heisenberg Hamiltonian. Error bars indicate the accumulation of
truncation error (ε) after each step of DMRG.

22

4.2 Results

4.2.2 Finite algorithm

Finite DMRG begins with the infinite algorithm. After building the system to

desired block size L, the block is split into a left block (initially with all of the sites)

and a right block (initially with no sites). Using the same steps described above,

sites are transferred from the left block to the right block. Soon, all sites will be in

the right block. At this point, the sites are transferred back into the left block. This

entire process constitutes a single sweep of the finite DMRG algorithm.

The user can change the block dimensionality, m, between each of the sweeps.

For example, Figure 4.6a shows results from three sweeps of finite DMRG, each

with a larger m. The initial state of the system in Figure 4.6a was the same as

the final state of the system in Figure 4.5b. Each sweep of DMRG increases the

accuracy of the ground state energy estimate, Ê0, especially if m is increased as

well.

Qualitatively, each sweep of finite DMRG spreads information about local in-

teractions to nearby sites that are indirectly affected by these interactions. For

example, an interaction between sites χ1 and χ2 might affect the state of χ3 in a

secondary way. Each sweep of finite DMRG adds more information about this sec-

ondary interaction to the compressed system, producing a more accurate final pic-

ture. These changes correspond to small changes in operators such as the system

Hamiltonian H , spin operator Sz, and raising operator S+. A qualitative picture of

these changes is shown in Figure 4.6b.

23

4.2 Results

0 10 20 30 40 50 60 70
step #

0.000085

0.000084

0.000083

0.000082

0.000081

0.000080
Gr

ou
nd

 st
at

e
en

er
gy

 (E
0)

4.319e 1 Finite DMRG E0 estimates
m = 12
m = 14
m = 16
exact

(a) Finite DMRG convergence. Error bars represent only the errors introduced by finite
DMRG.

0 5 10 15

0
2
4
6
8

10
12
14

In
fin

ite
 D

M
RG

H

0 5 10 15

0
2
4
6
8

10
12
14

Sz

0 5 10 15

0
2
4
6
8

10
12
14

S +

0 5 10 15

0
2
4
6
8

10
12
14

Fi
ni

te
 D

M
RG

H

0 5 10 15

0
2
4
6
8

10
12
14

Sz

0 5 10 15

0
2
4
6
8

10
12
14

S +

0.4

0.2

0.0

0.2

0.4

co
lo

r s
ca

le

(b) Comparison of block operators before and after finite DMRG. Note, for example, the
small differences along the off-diagonal elements of the Hamiltonian.

Figure 4.6: Convergence of the finite DMRG algorithm to the ground state energy
E0 of a 16-site Heisenberg Hamiltonian after running the infinite algorithm.

24

4.3 DMRG in the MPS picture

4.3 DMRG in the MPS picture

The Density Matrix Renormalization Group (DMRG) algorithm is particularly

interesting because it can be reexpressed in terms of Matrix Product States [27, 33].

In fact, DMRG is one of the most common ways of obtaining MPS coefficients for

1D systems [33]. The objective of this section is to provide a sketch of what DMRG

looks like in the MPS picture. For a more thorough treatment of this subject, refer

to Schollwock (2011) [27].

Connecting DMRG and MPS comes down to reorganizing the O[md×m] matrices

obtained after adding each site (see equation 4.10). Instead of keeping the O[md×m]

transformation matrix as a single [md × m] matrix, we can instead think of it as

d matrices of dimension [m × m] labeled by si ranging from 1 to d. Notation-

ally, we have Osij,k = Asij,k. The site indexing, i, of the A matrices must be in-

cluded since the transformation matrix is also site dependent. Hence O[i][md×m] 7→

{(A[i]si)[m×m]}dsi=1 where the {} contains the set of d matrices (each of dimension

[m×m]) that parameterize site i.

In this chapter, we introduced the DMRG algorithm and showed how it can

be used to efficiently obtain ground state energies and matrix product states of 1D

systems. In the next chapter, we will explore whether neural networks can perform

the same tasks.

25

Chapter 5

Measuring Entanglement with Neural

Networks

”Last year, the cost of a top, world-class deep learning expert was about the same as a

top NFL quarterback prospect,” said Peter Lee, Vice President of Microsoft Research,

in 2014 [32]. Lee’s claim is a testament to deep learning’s massive surge in pop-

ularity over the past several years. Technology companies tend to proselytize the

merits of each new technology, but deep learning has also made a name for itself by

powering breakthrough results in computer vision, translation, and several areas

of basic science (see Section 1.2).

Deep learning is exciting because it enables computers to learn complex mul-

tivariate information from raw data. In this chapter, we will introduce the mathe-

matics of neural networks, the building blocks of deep learning, and train them to

measure properties of entangled systems.

26

5.1 Previous work

5.1 Previous work

Deep learning is already an established tool in quantum chemistry. A 2017

paper by Justin Gilmer showed that deep neural networks can predict the quantum

mechanical properties of small organic molecules to within chemical accuracy [10].

They can do this several orders of magnitude more quickly than algorithms based

on Density Functional Theory (DFT), with little cost in accuracy.

Neural networks can also solve the Schrödinger equation. Mills et al. [20]

trained a convolutional neural network to compute the energy spectrum of a single

electron, given an arbitrary 2D potential. The training data was generated using

an actual Schrödinger equation solver.

Of particular interest is a 2017 paper by Carleo and Troyer which showed that

neural networks can determine the ground state and ”describe the unitary time

evolution of complex, interacting quantum systems” [6]. More specifically, the

authors used a neural network to determine ground states of 1D Ising and Heisen-

berg models for lattices of up to 80 sites. They also used it to solve for the ground

state of a 2D (10× 10) Heisenberg Hamiltonian.

These are just a few examples of successful research projects that combine deep

learning and quantum mechanics. They suggest that neural networks might per-

form well on other problems in quantum mechanics, in particular, the task of cal-

culating MPS coefficients.

27

5.2 Neural networks

5.2 Neural networks

5.2.1 Formalism

Neural networks can be thought of as multivariate function approximators. In-

deed, Hornik et al. [14] proved that multilayer feedforward networks are a class of

universal approximators. In other words, for an arbitrary Borel measurable func-

tion y(x), it is possible to make the approximation shown in equation 5.1.

y(x) ≈ ŷ(x) where ŷ(x) = fNN(x, θ) (5.1)

This is accomplished by choosing values for the network’s trainable parameters, θ,

that minimize the difference between the functions y and ŷ. Think of this process

as an optimization problem

arg min
θ
L(y, ŷ) (5.2)

where L(y, ŷ) is a loss function; it measures how well ŷ approximates y [11].

Data scientists use many different loss functions depending on the training objec-

tive. A common loss function is L2 Loss:

L(y, ŷ) =
1

2

∑
i

(yi − ŷi)
2 (5.3)

The basic neural network is a series of linear transformations followed by nonlin-

ear, element-wise ”activation” functions such as the sigmoid, hyperbolic tangent,

or RELU (REctified Linear Unit) functions [23, 26]. If x is a finite-dimensional in-

put vector, σ is the element-wise activation function, and W and b are matrices of

trainable parameters such that θ = [W1,W2, . . .Wn,b1,b2, . . . ,bn], then the neural

28

5.2 Neural networks

network function is given by equations 5.4-5.8

ŷ[1×s] = fNN(x, θ) = σ(zn) (5.4)

= σ(h[1×r]
n ·W[r×s]

n + b[1×s]
n) (5.5)

where h[1×r]
n = σ(h

[1×q]
n−1 ·W

[q×r]
n−1 + b

[1×r]
n−1) (5.6)

. . . (5.7)

where h
[1×n]
2 = σ(x[1×m] ·W[m×n]

1 + b
[1×n]
1) (5.8)

Here the superscripts denote matrix dimensions and the subscripts denote the

layer of the neural network. The neural network above has a total of n layers.

Networks for which n > 1 are said to be deep; in state-of-the-art computer vision

models, n can exceed 100 [12, 15]. For the purposes of this project, though, we used

n = {2, 3}.

We can optimize θ using a weight-update algorithm such as stochastic gradi-

ent descent. The basic idea is to take a partial derivative of the loss function with

respect to every θi using the chain rule. For example, imagine we wanted to com-

pute the gradient on Wn[i, j] from equation 5.5 where σ(z) is the sigmoid function,

σ(z) = 1
1+e−z .

∂L
∂Wn[i, j]

=
∂L
∂ŷ

∂ŷ

∂zn

∂zn
∂Wn[i, j]

(5.9)

=
∂L
∂ŷ

∂ŷ

∂z
[1×s]
n [j]

∂

∂Wn[i, j]
(h[1×r]

n [i] ·W[r×s]
n [i, j] + b[1×s]

n [j]) (5.10)

=
∂L
∂ŷ

∂ŷ

∂z
[1×s]
n [j]

h[1×r]
n [i] (5.11)

29

5.2 Neural networks

for efficiency of notation (and also computation), we can vectorize the calculation:

∂L
∂Wn

[r×s]
= (hᵀ

n)[r×1] ·
(
∂L
∂ŷ

∂ŷ

∂zn

)[1×s]

vectorize (5.12)

= (hᵀ
n)[r×1] · ŷ(1− ŷ)[1×s] ·

(
∂L
∂ŷ

)
because

∂σ

∂z
= σ(1− σ) (5.13)

= (hᵀ
n)[r×1] · ŷ(1− ŷ)[1×s](ŷ − y)[1×s] derivative of equation 5.3 (5.14)

Similarly, we can compute derivatives on any θi in the network. In the field of

machine learning, this process is called backpropagation because it allows one to

backpropagate errors through the network [13]. Once every gradient has been

computed, we can update the θ according to equation 5.15 where α is a user-

defined constant called the learning rate.

θ = θ + α · ∇θ (5.15)

Equation 5.15 is the learning rule for stochastic gradient descent. There are

other, more complex learning rules based on the same idea such as Adam [18]. We

found that Adam worked better in practice, and used it in all experiments.

In practice, it is possible to define the input variable x as matrix of dimension

[b,m] where m is the dimensionality of each input example and b is the number

of different inputs. Each of these [b,m] matrices is called a batch, so b is called

the batch size. Computing the gradients for a batched input reduces noise and

accelerates learning, so neural networks are often trained on batched inputs where

b is in range=(1, 32).

To summarize, the idea of neural networks is to feed a set of training examples

(x) through the model, compare the outputs (ŷ) to their target values (y) obtain

30

5.2 Neural networks

gradients on all trainable parameters (∇θ), and then move each parameter slightly

in the direction of its gradient. A visual representation of this process is shown in

Figure 5.1.

Figure 5.1: Graphical representation of a full forward-backward pass on a 2-layer
neural network. Blue: input parameters. Green: trainable parameters. Orange:
operations. White: intermediate variables. Yellow: similarities between forward-
backward passes.

Most modern deep learning frameworks compute gradients automatically, a

process called automatic differentiation1 [4]. These frameworks include TensorFlow,

PyTorch, Theano, and Chainer [1, 24, 2, 29]. We chose PyTorch for this project be-

cause of its lightweight structure, smooth interface with Python, and high-performance

linear algebra library.

Pseudocode for training a neural network is provided in Section 6.2

1Stanford’s CS231n course notes (http://cs231n.github.io) is an approachable introduction to
computing gradients with backpropagation and understanding automatic differentiation [17].

31

5.3 Results

5.3 Results

5.3.1 Training examples

We studied a 1D system of four spin-1
2

particles with interactions as described

in equation 5.16. We chose this class of interactions because it is very general and

has a tensor product structure. Furthermore, the Heisenberg Hamiltonian is a sub-

class of the training Hamiltonian, which allows us to compare our neural network

results to the DMRG results we obtained in Chapter 4.

Hsys = Jxz(Ŝ
xz
1 ⊗ Ŝxz2) +

J

2

(
Ŝ+
1 ⊗ Ŝ−2 + Ŝ−1 ⊗ Ŝ+

2

)
(5.16)

In equation 5.16, Jxz and J are chosen from the random normal distribution

N (µ = 0, σ = 1). The terms Ŝxz and Ŝ+ are defined as shown in equation 5.17

where α1, α2, β, and γ are also drawn from N .

Ŝxz =

 α1 0

0 −α2

+

 0 β

β 0

 (5.17)

Ŝ+ = (Ŝ−)† = γS+ (5.18)

We omitted Sy because it introduces complex values; to operate on complex

numbers with neural networks we would be forced to double the input and output

dimensions so as to include both real and imaginary components.

Some example Hamiltonians produced by equation 5.16 are shown in Figure

5.2. It should give some sense of the diversity of possible Hsys Hamiltonians. Mak-

32

5.3 Results

ing the problem space large forced our neural network models to find solutions

that generalized well.

0.6

0.4

0.2

0.0

0.2

0.4

0.6

co
lo

r s
ca

le

Example training Hamiltonians

Figure 5.2: Examples of a random Hamiltonians produced by equation 5.16.

5.3.2 Tasks

We trained neural network models to perform three tasks related to solving

ground state problems for entangled systems. Informal names for each model and

the training objectives are summarized below:

1. H2e0: approximate Hsys → E0

Given the Hamiltonian, Hsys, of an interacting system, a neural network

was trained to estimate the ground state energy, E0, of the system.

2. psi2psi: approximate ψ → ψMPS

Given a random (but normalized) state vector, ψ, a neural network was

trained to estimate the MPS coefficients that will best reconstruct the original

33

5.3 Results

state vector, ψ.

3. H2psi0: approximate Hsys → ψ0

Given the Hamiltonian, Hsys, of an interacting system, a neural network

was trained to estimate the ground state eigenvector, ψ0 of the system.

Table 5.1 summarizes the training parameters of each of these neural network

models. All of the nonlinear activation functions, σ were rectified linear activations

[23] unless otherwise specified. We used L2 loss, as described in equation 5.3, for

training models on all three tasks. Code is available online.2

Table 5.1: Neural network settings. Here, n corresponds to number of layers, h to
size of hidden layers, α to learning rate, x to the batched input, and y to the target
matrix. Brackets denote matrix dimensions. For example, [x] corresponds to [b,m]
where b is the batch size and m is the input dimension.

Name n h α x [x] y [y] train steps

H2e0 3 512 3× 10−4 Hsys [16× 256] E0 [16× 1] 300000

psi2psi 3 512 3× 10−4 ψ [1× 16] ψmps [1× 32] 300000

H2psi0 3 512 3× 10−4 Hsys [16× 256] ψ0 [16× 16] 300000

Input data was synthesized at runtime and targets were computed by exact

diagonalization. All Hsys were constructed according to equation 5.16. The ψ vec-

tors in Task 2 were drawn from a random uniform distribution of range=(0,1) and

normalized so that ψ†ψ = 1.
2Available at https://github.com/greydanus/psi0nn.

34

5.3 Results

5.3.3 Task 1: approximate Hsys → E0

arg min
θ

1

2
(ENN − E0)

2 (5.19)

We trained our first model according to the optimization objective in equation

5.19. For the Hamiltonians constructed according to equation 5.16, ground state

energies generally fell within range=(-3,0). Our model was able to estimate ground

state energies to within±0.015, a mean percent error of about 1.1%. Full results are

summarized in Table 5.2.

Table 5.2: Results for Task 1.

Type of energy Mean energy Mean error Mean % error

E0 −1.297± 0.01 N/A N/A

ÊNN −1.288± 0.01 0.015± 0.01 1.13± 1

mean(E0) −1.297 (all) 0.644± 0.01 49.67± 1

We were interested in how the neural network performed on the Heisenberg

Hamiltonian which, as mentioned earlier, is a subspace of the Hamiltonians con-

structed by equation 5.16. The Heisenberg Hamiltonian has two coupling terms,

J and Jz as shown in equation 4.12. First, we varied J and plotted ground state

energy estimates against exact ground state energies computed with exact diago-

nalization. Figure 5.3 shows this for four different constant values of Jz. Next, we

varied Jz and plotted the same quantities for four different values of J as shown

in Figure 5.4.

The combination of Figures 5.3 and 5.4 gives a picture of how the neural net-

work learns to solve the Heisenberg subspace. The approximations improve with

35

5.3 Results

number of training steps; the model converges upon excellent solutions for over

100000 training steps. Adjusting h (number of hidden units), n (number of lay-

ers), α (learning rate), and other neural network hyperparameters could produce

additional gains in accuracy.

36

5.3 Results

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
J = 1.00

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
J = 0.33

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
J = 0.33

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
J = 1.00

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

Plot E0 vs. Jz for four values of J

Jz coupling term

Gr
ou

nd
 st

at
e

en
er

gy
 (E

0)

Figure 5.3: A 3-layer neural network learns to estimate the ground state energies
of the Heisenberg Hamiltonian for various values of the coupling constant J .

37

5.3 Results

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Jz = 1.00

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Jz = 0.33

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Jz = 0.33

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

1.0 0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Jz = 1.00

exact
NN (10 steps)
NN (300 steps)
NN (10000 steps)
NN (300000 steps)

Plot E0 vs. J for four values of Jz

J coupling term

Gr
ou

nd
 st

at
e

en
er

gy
 (E

0)

Figure 5.4: A 3-layer neural network learns to estimate the ground state energies
of the Heisenberg Hamiltonian for various values of the coupling constant Jz.

38

5.3 Results

5.3.4 Task 2: approximate ψ → ψMPS

arg min
θ

1

2

∑
i

(ψi − ψi,MPS)2 (5.20)

We were also interested to see if a neural network could map a full-space state

vector, ψ to its MPS representation, ψMPS . In order to do this, we trained our neural

network on the autoencoder-like objective shown in equation 5.20.

In deep learning, an autoencoder is a type of neural network which is trained

to reconstruct its input as accurately as possible. This is made difficult by making

the dimensions of its hidden layers smaller than the dimension of the input data.

These neural networks learn to create very efficient representations of the input

data [34]. The encoder part of the autoencoder is the set of progressively lower-

dimensional layers from the input layer to the middle; the decoder is the set of

progressively higher-dimensional layers from the middle to the output layer [11].

In our model, the encoder is a neural network which takes as input the vector

ψ and outputs estimates of the MPS coefficients ψ̂NN,MPS . The decoder portion is

simply a PyTorch implementation of equation 3.1. An L2 loss is then computed

according to equation 5.20. As the decoder has no trainable parameters, PyTorch

simply sends gradients backwards through equation 3.1, obtains gradients on the

estimated MPS coefficients, and trains the neural network encoder as usual. This

structure is summarized in Figure 5.5.

39

5.3 Results

...

Definition of MPS
from Chapter 3
(equation 3.1)

[1 x 16] 512 [1 x 32]

[2 x 4 x [2 x 2]]

[1 x 16]512 512
[1 x dN] h h h [1 x dNm2]

[d x N x [m x m]]

[1 x dN]

reshape

MPS
coefficients

Figure 5.5: Overview of the autoencoder structure we used to train a neural net-
work on the ψ → ψMPS task.

We obtained an average reconstruction error of ±0.035 which corresponds to

a 3.45% mean percent error. We were also interested in whether the model could

reconstruct the GHZ state and obtain the MPS coefficients listed in Chapter 3.

Our model was able to reconstruct the 4-particle GHZ state with average error

of ±0.049 (4.9% mean percent error) as shown in Figure 5.6.

0 2 4 6 8 10 12 14

0.5
0.0
0.5

true

0 2 4 6 8 10 12 14

0.5
0.0
0.5

reconstructed MPS

0.0

0.2

0.4

0.6

0.8

co
lo

r s
ca

le

Figure 5.6: Training a neural network to approximate MPS coefficients, then recon-
structing the original state from those coefficients.

40

5.3 Results

Interestingly, the estimated MPS coefficients were generally different from those

listed in Chapter 3, as shown in Figure 5.7. We did, however, observe a close cor-

respondence between the expected MPS coefficients and neural network estimates

earlier in training (training step 20000), as shown in Figure 5.8. In both cases, the

reconstructed ψ had a mean percent error of less than 5%

The MPS representation is not unique. For example, there are both right canon-

ical and left canonical forms of MPS [27]. We hypothesize that the neural network

simply used a different MPS ”basis” than the ”exact” example taken from Chapter

3. This is probably what has happened in Figure 5.7a; if the matrices are rounded

to zero or one, then they multiply correctly to produce the GHZ state.

41

5.3 Results

(a) NN prediction, at training step 64000, for MPS coefficients of the GHZ state.

(b) MPS coefficients of the GHZ state as described in Chapter 3.

Figure 5.7: Using the GHZ state as a case study, we observe an interesting differ-
ence between MPS coefficients predicted by a neural network and the expected
coefficients.

42

5.3 Results

(a) NN prediction, at training step 20000, for MPS coefficients of the GHZ state.

(b) MPS coefficients of the GHZ state as described in Chapter 3.

Figure 5.8: In this case, we observe a close correspondence between MPS coeffi-
cients predicted by a neural network and the expected coefficients.

43

5.3 Results

5.3.5 Task 3: approximate Hsys → ψ0

arg min
θ

1

2
(EψNN

− E0)
2 (5.21)

The final training objective is shown in equation 5.21. We made only one signif-

icant adjustment to the neural network before training on this task: we normalized

the output vector so that ψᵀ
NNψNN = 1. The loss function was a L2 loss (see equa-

tion 5.3) between the true ground state energy E0 and the energy of the ground

state predicted by the model, ENN , computed via equation 5.22.

EψNN
= 〈ψNN |Hsys |ψNN〉 (5.22)

We also combined this task to solve for ground states in the MPS picture, pro-

ducing the modified training objectives shown in equations 5.23 and 5.24.

arg min
θ

1

2
(EψNN,MPS

− E0)
2 (5.23)

EψNN,MPS
= 〈ψNN,MPS|Hsys |ψNN,MPS〉 (5.24)

Results for testing the model on 5000 Hamiltonians (computed according to

equation 5.16) are summarized in Table 5.3 and Figure 5.9.

44

5.3 Results

Table 5.3: Locating neural network estimates of ground states for Hsys with respect
to the systems’ low-energy eigenstates.

Type of energy Mean Mean error Mean % error

E0 −1.310± 0.01 N/A N/A

EψNN
−1.284± 0.01 0.026± 0.01 1.99± 0.1

E1 −1.258± 0.01 N/A N/A

EψNN,MPS
−1.251± 0.01 0.051± 0.01 3.94± 0.1

E2 −1.021± 0.01 N/A N/A

Eψrandom
0.0112± 0.01 1.321± 0.01 100.86± 0.1

1.30

1.25

1.20

1.15

1.10

1.05

Average energy

E2
E NN, MPS

E1
E NN

E0

Figure 5.9: Comparison of the average energy of neural network predictions
against the three lowest eigenstates of Hsys.

45

5.3 Results

Qualitatively, the exact ground states often looked similar to the neural net-

works’ predictions such as the example shown in Figure 5.10.

0 2 4 6 8 10 12 14

0.5
0.0
0.5

exact 0

0 2 4 6 8 10 12 14

0.5
0.0
0.5

estimated 0

0.4

0.2

0.0

0.2

0.4

co
lo

r s
ca

le

Figure 5.10: Comparison between the actual ground state and the low-energy state,
ψNN , estimated by our model. Note the close correspondence between most val-
ues.

There were other situations, though, where ψNN looked nothing like ψ0. We hy-

pothesized that, in these cases, the neural network was producing a linear combi-

nation of different low-energy states. We tested this hypothesis by comparing ψNN

to both ψ0 and ψ1. As shown in Figure 5.11, we found cases where ψNN looked

more similar to ψ1 than ψ0. These preliminary findings support our hypothesis.

46

5.3 Results

Figure 5.11: Comparison between ψ0, ψ1, and ψNN . Note the close correspondence
between ψ1, and ψNN in the circled area.

We were interested to see whether a neural network could solve the same

ground state problem and produce MPS coefficients for the solution, ψ̂NN,MPS , in-

stead of the full state solution ψ̂NN . In other words, we used the autoencoder struc-

ture described in Task 2 but used the system Hamiltonian as an input and mini-

mized the energy of the output, ψ̂NN,MPS according to equation 5.22. A schema of

this model is shown in Figure 5.12.

...

Definition of MPS
from Chapter 3
(equation 3.1)

[16 x 16]

[1 x 256] 512 [1 x 32]

[2 x 4 x [2 x 2]]

[1 x 16]512 512
[dN x dN]

[1 x d2N] h h h [1 x dNm2]

[d x N x [m x m]]

[1 x dN]

reshape

reshape

MPS
coefficients

Figure 5.12: Overview of the autoencoder structure we used to train a neural net-
work on the Hsys → ψMPS task.

47

5.4 Discussion

This model was also successful in finding low-energy states of the system. For

some test samples, it produced near-exact ground states as shown in Figure 5.13.

For other samples, it produced energies close to the first excited state. Future work

will analyze why this occurs and lower the average energy obtained using NN

output ψNN,MPS below the first excited state.

0 2 4 6 8 10 12 14

0.5
0.0
0.5

exact 0

0 2 4 6 8 10 12 14

0.5
0.0
0.5

low-energy estimate NN, MPS

0.4

0.2

0.0

0.2

0.4

co
lo

r s
ca

le

Figure 5.13: Comparison between the actual ground state, ψ0, and the low-energy
state, ψNN,MPS , estimated by our model. Note the close correspondence between
most values.

5.4 Discussion

In this section, we shifted our attention to a new computational tool, deep learn-

ing, and explored its ability to measure quantum entangled systems. Given its role

in obtaining state of the art results for other open problems in quantum mechanics,

this direction seemed promising [5, 7, 10, 5, 7, 20, 6].

We showed that neural networks can produce accurate estimates of ground

state energies for systems of several interacting spin-1
2

particles. We also found

that they can transform arbitrary quantum states into their MPS representations.

Finally, we showed that they can be trained to produce states with energies well

48

5.4 Discussion

below the first excited state. As our approach was quite general, we speculate that

these tasks could be extended to larger systems and to 2D and 3D systems.

Though we used full system Hamiltonians, which grow3 as dN , as inputs to our

models, we could just as easily have input only the 6 coupling terms – {α1, α2, β, γ, J, Jz}

– for each site-site interaction, which grows as 6N .

These results confirm the findings of Carleo and Troyer [6] using a different

type of deep learning architecture (Carleo and Troyer used Restricted Boltzmann

Machines). They also extend deep learning to the domain of Matrix Product States;

it appears that neural networks can solve ground state problems in the MPS repre-

sentation with little to no cost in accuracy (see Table 5.3).

3Where d is the number of states per site and N is the number of sites.

49

Chapter 6

Closing remarks

In this thesis, we explored the fundamental quantum phenomenon of entan-

glement and explained why it makes simulating quantum systems difficult. In

order to avoid the exponential growth of computation time imposed by entangle-

ment, we introduced Matrix Product States (MPS) and showed how to use them to

perform calculations efficiently over a large number (N > 30) of entangled sites.

Next, we explored one of the most popular algorithms for obtaining MPS co-

efficients, the Density Matrix Renormalization Group (DMRG). We showed that it

can produce quick and accurate estimates of ground state energies for large sys-

tems because its computational cost grows linearly with the number of sites, N .

We even showed that DMRG and MPS are two sides of the same coin; the formal

definition of DMRG can be rewritten in terms of the A coefficient matrices of MPS.

Finally, the new results contained in this thesis showed that deep learning –

a tool that has already produced impressive results in other areas of quantum

research – can perform measurements on entangled systems. In particular, we

obtained good estimates of ground state energies for Hamiltonians with tensor

50

Closing remarks

product structure and learned to transform quantum states into their MPS repre-

sentations. We also computed low-energy states, well below the first excited state,

directly from system Hamiltonians.

Our findings suggest that deep learning is indeed a valuable tool for measuring

entangled systems. We believe that changing the input data from a system Hamil-

tonian to a list of local interaction Hamiltonians, training larger neural networks,

and extending our model to solve 2D and 3D systems could produce interesting,

and potentially state-of-the-art, solutions to large quantum many-body problems.

51

Appendix A: Linear algebra

This appendix is adapted from previous work by Professor James Whitfield.

6.1 Singular value decomposition

The singular value decomposition is similar to the eigenvalue decomposition

but it can be applied to matrices that are not square. Singular values are frequently

used to characterize norms of matrices. For instance, the operator norm is the

largest singular value and the trace norm is the sum of the singular values.

The singular value decomposition of T says that

T = V ΣW † (6.1)

with the following spatial decomposition: [n ×m] = [n × n][n ×m][m ×m]. Here

[n × m] denotes the space of matrices with n columns and m rows. V and W are

unitary and Σ is diagonal. The diagonal elements of Σ are the singular values and,

they are uniquely specified by T .

The singular values of matrix T are the eigenvalues of
√
T †T . Since T †T is

positive semi-definite, the square root function is well defined. Additionally, since

52

6.1 Singular value decomposition

T †T is normal ([T, T †] = 0) we have T †T = V ΛV † with Λ a diagonal matrix and V

a unitary matrix. We define the singular matrix as Σ ≡
√

Λ.

For arbitrary matrix, T , we now give constructions for the input and output

unitary matrices, V and W , which will prove that the SVD exists for all matrices. If

T is non-singular, we can invert the diagonal singular value matrix, Σ−1 by taking

the reciprocal of the singular values. Letting W = T †V Σ−1, W is unitary and

T = V ΣW †.

When T is singular, the inverse of Σ is no longer available as some of the sin-

gular values are zero. Instead, the pseudo-inverse is taken where only the inverse

of non-zero diagonal elements is used. As before, the output matrix W is defined

using the pseudo-inverse. To satisfy the unitary constraint, arbitrary orthonormal

vectors are included as columns of W . Thus, the singular value decomposition

exists for all matrices regardless of shape and the matrices need not satisfy special

properties.

The vector form of the SVD can be easily seen as TW = V Σ and V †T = ΣW †

imply

T |wi〉 = σi|vi〉 (6.2)

〈vi|T = 〈wi|σi (6.3)

The vectors {|vi〉} are called the left singular vectors and {|wi〉}, the right singular

vectors.

53

6.2 Schmidt decomposition

6.2 Schmidt decomposition

The Schmidt decomposition discussed in Chapter 3 is essentially a restatement

of the SVD we have discussed so far. We now construct the Schmidt decomposi-

tion using the SVD. Given an arbitrary orthonormal basis for HA and HB denoted

as {|i〉} and {|j〉} respectively, we wish to ascertain the Schmidt vectors and the

Schmidt coefficients. Since we can span HA ⊗ HB by the tensor product of the

bases, we can write the state ψ as, |ψ〉 =
∑

ij Tij|i〉|j〉, where T is [n×m]. Here n is

the dimension of HA and m is the dimension of HB. Applying the SVD to matrix T

yields T = V ΣW †. Evaluating the (i, j)th matrix element and inserting resolutions

of the identity we get,

Tij =
m∑
l=1

n∑
k=1

VikΣklW
†
lj.

Inserting this into the expression for ψ

|ψ〉 =
∑
ij

Tij|i〉|j〉

=
n∑
k=1

σkδkl

(∑
i

Vik|i〉

)(∑
j

W †
lj|j〉

)

=

χ∑
k=1

σk|ak〉|bk〉

with |aj〉 ≡
∑n

k=1 Vik|i〉 and |bj〉 ≡
∑m

k=1W
∗
jl|j〉. The singular values are the Schmidt

coefficients and the number of non-zero singular values is the Schmidt number.

54

Appendix B: Pseudocode

6.3 Finite DMRG

The Finite DMRG algorithm discussed in Chapter 4 follows the basic structure

shown below. There are many implementations online; code for this thesis is avail-

able at https://github.com/greydanus/psi0nn.

Algorithm 1 Infinite Density Matrix Renormalization Group (DMRG)

1: procedure INFINITE DMRG
2: block← single free site
3: while current block length < 1

2
max block length:

4: S ′E ← SB + SS + SBS for S in operators enlarge block
5: Hsuper ← HE +HE′ +HSS′ build Hsuper.
6: E0, ψE0 ← eigsh(Hsuper, k=1) decompose Hsuper.
7: compute reduced density matrix, ρ:
8: ρ← TrR |ψE0〉 〈ψE0 |
9: evals, evecs←svd(ρ) (where e’vecs are sorted by descending e’vals)

10: O ← concatenate(evecs[: m]) construct transformation matrix
11: SE ← O†S ′EO for S ′E in operators rotate and truncate block
12: estimate truncation error, ε:
13: ε← 1−

∑
i<m evals[i]

14: return block, E0, ψE0 , ε

55

6.4 Neural network

6.4 Neural network

We can summarize the training process of a neural network as shown below.

Reference equations 5.4-5.15 and Figure 5.1 for additional clarity. This pseudocode

was adapted from Mori, 2005 [22].

Algorithm 2 Training a neural network with backpropagation

1: procedure BACKPROP
2: W← random intial values
3: for e = 1 to N (all examples):
4: x← input for example e.
5: y ← output for example e.
6: run x forward through network, computing all {ŷi},{zi}
7: for all weights (j, i) (in reverse order):

8: compute∇i ←
{

(yi − ŷi) · L′(zi) if i is output node
L′(zi)

∑
kWi,k∇k otherwise

9: Wj,i ← Wj,i + α · ∇i

56

Bibliography

[1] Martn Abadi, Ashish Agarwal, and Paul Barham. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed Systems. Technical report,

2015.

[2] Rami Al-Rfou and Guillaume Alain. Theano: A Python framework for

fast computation of mathematical expressions. arXiv Preprint (1605.02688v1),

2016.

[3] P Baldi, P Sadowski, and D Whiteson. Searching for Exotic Particles in High-

Energy Physics with Deep Learning. ArXiv Preprint (1402.4735v2), 2014.

[4] Atilim G Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jef-

frey Mark Siskind. Automatic differentiation in machine learning: a survey.

ArXiv Preprint (1502.05767v2), 2015.

[5] Jrg Behler and Michele Parrinello. Generalized Neural-Network Representa-

tion of High-Dimensional Potential-Energy Surfaces. Physical Review Letters,

98, 2007.

[6] Giuseppe Carleo and Matthias Troyer. Solving the Quantum Many-Body

Problem with Artificial Neural Networks. Science, 2017.

57

BIBLIOGRAPHY

[7] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael

Gómez-Bombarelli, Timothy Hirzel, Aln Aspuru-Guzik, and Ryan P Adams.

Convolutional Networks on Graphs for Learning Molecular Fingerprints. Ad-

vances in Neural Information Processing Systems, 28:2224–2232, 2015.

[8] Maria Eckholt. Matrix Product Formalism. Master’s Thesis, pages 5–35, 2005.

[9] A Einstein, B Podolsky, and N Rosen. Can the Quantum-Mechanical Descrip-

tion of Physical Reality Be Considered Complete? Physical Review, 47:777–780,

1935.

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. Neural Message Passing for Quantum Chemistry. arXiv

Preprint (1704.01212v1), 2017.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. Computer Vision and Pattern Recognition, 2015.

[13] Hecht-Nielsen. Theory of the backpropagation neural network. In Interna-

tional Joint Conference on Neural Networks, pages 593–605. IEEE, 1989.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–366, 1

1989.

[15] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens Van Der Maaten.

58

BIBLIOGRAPHY

Densely Connected Convolutional Networks. Computer Vision and Pattern

Recognition, 2016.

[16] Rajibul Islam, Ruichao Ma, Philipp M Preiss, M Eric Tai, Alexander Lukin,

Matthew Rispoli, and Markus Greiner. Measuring entanglement entropy

through the interference of quantum many-body twins. Nature, 2015.

[17] Andrej Karpathy. CS231n Convolutional Neural Networks for Visual Recog-

nition, 2015.

[18] Diederik P Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Opti-

mization. International Conference on Learning Representations, 2015.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classifi-

cation with Deep Convolutional Neural Networks. Neural Information Process-

ing Systems, pages 1097–1105, 2012.

[20] K Mills, M Spanner, and I Tamplyn. Deep learning and the Schrodinger equa-

tion. Preprint (arXiv:1702.01361v1), 2017.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Daan Wierstra,

Shane Legg, and Demis Hassabis. Human-level control through deep rein-

forcement learning. Nature, 518, 2015.

[22] Greg Mori. Neural Networks, 2005.

[23] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted

Boltzmann Machines. Proceedings of the 27 th International Conference on Ma-

chine Learning, 2010.

59

BIBLIOGRAPHY

[24] Adam Paszke, Sam Gross, and Soumith Chintala. PyTorch, 2017.

[25] Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Kon-

erding, and Vijay Pande. Massively Multitask Networks for Drug Discovery.

Preprint (arXiv:1502.02072), 2015.

[26] Jrgen Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015.

[27] Ulrich Schollwöck. The density-matrix renormalization group in the age of

matrix product states. Annals of Physics, 326(1), 2011.

[28] Daniel Stoecklein, Kin Gwn Lore, Michael Davies, Soumik Sarkar, and Baskar

Ganapathysubramanian. Deep Learning for Flow Sculpting: Insights into

Efficient Learning using Scientific Simulation Data. Scientific Reports, 7:46368,

4 2017.

[29] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a Next-

Generation Open Source Framework for Deep Learning. Annual Conference on

Neural Information Processing Systems (NIPS), 2015.

[30] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Per-

lin. Accelerating Eulerian Fluid Simulation With Convolutional Networks.

Preprint (arXiv:1607.03597v2), 2016.

[31] Stefan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy Ar-

ray: A Structure for Efficient Numerical Computation. Computing in Science &

Engineering, 13(2):22–30, 3 2011.

60

BIBLIOGRAPHY

[32] Ashlee Vance. The Race to Buy the Human Brains Behind Deep Learning

Machines - Bloomberg, 2014.

[33] F Verstraete, J I Cirac, and V Murg. Matrix Product States, Projected Entangled

Pair States, and variational renormalization group methods for quantum spin

systems. Advances in Physics, 57(2), 2009.

[34] Vincent Pascal and Hugo Larochelle. Stacked Denoising Autoencoders:

Learning Useful Representations in a Deep Network with a Local Denois-

ing Criterion Pierre-Antoine Manzagol. Journal of Machine Learning Research,

11:3371–3408, 2010.

[35] Steven White. Density Matrix Formulation for Quantum Renormalization

Groups. Physical Review Letters, 69(19):2863–2866, 1992.

[36] Kenneth G Wilson. The renormalization group: Critical phenomena and the

Kodo problem. Reviews of Modern Physics, 47(4):773–840, 1975.

[37] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, and Mohammad

Norouzi. Google’s Neural Machine Translation System: Bridging the Gap be-

tween Human and Machine Translation. Preprint (arXiv:1609.08144v2), 2016.

61

	Abstract
	Preface
	Introduction
	Statement of thesis
	Background
	Overview

	Entanglement
	Definition
	The Einstein-Podolsky-Rosen (EPR) Paradox
	Two spin-12 particles
	Formal aspects
	Tensor product
	The curse of dimensionality

	Matrix Product States
	The MPS Ansatz
	Simple examples
	Expectation values

	Density Matrix Renormalization Group
	The DMRG algorithm
	Formalism

	Results
	Infinite algorithm
	Finite algorithm

	DMRG in the MPS picture

	Measuring Entanglement with Neural Networks
	Previous work
	Neural networks
	Formalism

	Results
	Training examples
	Tasks
	Task 1: approximate Hsys E0
	Task 2: approximate MPS
	Task 3: approximate Hsys 0

	Discussion

	Closing remarks
	Appendix A: Linear algebra
	Singular value decomposition
	Schmidt decomposition

	Appendix B: Pseudocode
	Finite DMRG
	Neural network

