Mastering Atari with an Actor-Critic Model

Sam Greydanus
greydasa@oregonstate.edu

January 19, 2018

Abstract

Reinforcement Learning (RL) with deep neural networks is an exciting area of research, but training
a deep RL agent is difficult in practice. In this talk, I will introduce the theories and intuitions of the
(Asynchronous) Advantage Actor-Critic (A3C) model and walk through a 180-line implementation in
PyTorch. By the end of my talk, you should have the tools you need to train your own Atari agents.

1 A3C in theory

The idea behind reinforcement learning is that, given an agent which can interact with its environment, one
can learn a policy that maximizes the expected reward.

= —

state E_eward action
5, i ay

'8

Fra

s.; | Environment]4—

Figure 1: Overview of the RL framework. An agent in state s; receives reward 7; from the environment.
Then, it chooses some internal policy, 7 to choose action a;, interacts with the environment, and receives the
next state/reward pair.

The idea is simple, but making it work in practice is tricky for a variety of reasons. In this talk, I'll use
the Atari video games as example environments because they show off 1) why getting RL to work in practice
is tricky 2) why RL is a powerful and interesting tool.

1.1 Policy Gradient Theorem

Suppose we have a reward function f(z) and an agent that acts according to probability distribution p(z).
We would like to modify the distribution p(x) to maximize the expectation value E,[f(z)]. Let’s assume
p(x) is differentiable and we can optimize it using gradient descent with respect to the expected reward.

Now all we need is to take the gradient of the expectation value:

VoE.[f(x)] = Vg Zp(m)f(x) definition of expectation value @)
= Z Vop(z) f(z) apply gradient to each term)
= (@) Vop(a) ¢y multiply by identity 3)
- p(z)
1
= ZP(I)Ve log p(z) f(x) because Vglogz = ;ng 4)
= E,[Vglogp(z)f(x)] this is the Policy Gradient Theorem 3)

This gives us the gradient of the expected reward. From now on, let’s start using 7y as our p(z) and
call it the agent’s policy. We’ll also refer to the expected reward This gives us the gradient of the expected
reward. From now on, let’s start using 7y as our p(x) and call it the agent’s policy. We’ll also refer to the
expected reward E,.[f(z)] as J.

1.2 REINFORCE

Many times, our agent will receive a reward not only because of the action a; which it just took, but also
because of the actions which led it into the high-reward state. These actions consist of the set a;_1, a;_2,
We would like to give the agent credit for these actions, especially the ones which helped it obtain the final
reward.

There is more than one solution to this problem of credit assignment, but here’s one idea. As you get
closer to the high-reward state, the actions you take are exponentially more likely to have contributed to that
reward. If this is the case, then you should spread the reward you received backwards in time. We do this
via gamma-discounted rewards:

R=Y 4'ri 6)
=0

Here, ~ is a hyperparameter that we, as experimenters, get to set. It generally corresponds to how sparse
the rewards are. We will use v = 0.99 for all experiments. We’ll use the value function V7 (s) = E4[R] to
represent the value of the state. If we want to describe the value of taking a particular action once we’re in
this state, we use the) function, Q™ (s,a) = R(s,a) +yV*(d(s,a)).

Now our policy gradient looks like this:

VJ(0) = Er,[Velogmy(s,a)Q (s, a)] 7

Notice that this is just the gradient of a differentiable function, log 7y(s, a), times a scalar which we
know how to compute, Q™ (s, a). If we want to, we can go ahead and train an agent using gradient descent.
This, in fact, is an algorithm called REINFORCE and it works well in some simple cases. Sadly, it doesn’t
work great for Atari.

Note. Many times, people will clip raw rewards to [—1, 1] before gamma discounting. I tried training on
Atari without this step and all my models failed.

1.3 Actor-critic

The big remaining issue is that Q™ (s, a) is not a well-behaved function (especially for Atari and other
complex environments). It is sparse, high-variance, and totally unnormalized.

The actor-critic trick is meant to reduce the variance of the policy gradient. Instead of using Q™ (s, a)
directly, we learn an estimator,

Qu(s,a) = Q7(s,a) ®)

This estimate has much lower variance, leading to better results in practice. Now we have:

VJ(0) = Er,[Vologmy(s,a)Qw(s,a)] 9)

Question. Why not simply reduce variance by keeping a running estimate of batch statistics and then
using them to reduce variance? Wouldn’t this accomplish the same ”smoothing” objective?

Answer. I'm not sure. I tried doing this in practice and it did not work as well. I’ve seen other people do
this within batches, which seemed to help with REINFORCE.

1.4 Advantage actor-critic

Another way to reduce the variance is to subtract a baseline from the policy gradient. To see how this works,
imagine if our expected reward looked like this:

Exyllogmg(s, a)(f(s,a) — g(s))] (10)

I want to convince you that if g has zero mean, then it won’t change the expectation value:

E., [logme(s,a)g(s)] = Z Z mo(s,a)g(s) from eqn. 2] (11)
seSacA
:Zg(s) ng(s,a) (12)
seS acA
= Zg(s) because Z mo(s,a) =1 (13)
seS a€A
=0 if g has zero mean (14)

Now, because E[A — B] = E[A] — E[B], we can conclude that
Ery[logmg(s, a)(f(s,a) — g(5))] = Ex,[logmo(s, a) f (s, a)] (15)

People call this “’subtracting a baseline” and it is another way to reduce variance. A good baseline ends
up being the value function, V7 (s). Recall that the advantage function is defined as

A" (s,a) =Q"(s,a) — V7 (s) (16)
~Quw(s,a) — Vy(s) a7

In equation [T7]I’ve replaced the value function with a learned estimate, just as we did for the (J-values
in section So, our new policy gradient becomes

VJ(0) = E.,[Vologmy(s,a)A™ (s,a)] (18)

1.5 TD actor-critic

One remaining issue is that, if we want to estimate the advantage using a neural network, we need two
separate estimators, one for Q. (s, a) and one for V, (s). There’s a better way: using the TD error, we can
estimate the advantage directly from V,,(s). Why? The TD error is an unbiased estimate of the advantage
function. Recall that the TD error is given by

0™ =1 4+ 4V (s8441) — V™ (s) (19)

The expectation value of the TD error looks like:

E[6™s,a] =E[r + YV™ (st41)]s,a] — V7 (s) (20)
=Q"(s,a) — V7 (s) 2D
=A"(s,a) (22)

Thus, if we use TD error, we only need to train one value estimator to approximate the advantage. The
policy gradient for our final advantage actor-critic model looks like:

VJ(0) = Er,[Vologmy(s,a)d™] (23)

This approximation produces gradients with much lower variance, giving a deep neural network enough
signal to learn to play Atari games very well.

2 A3Cin practice

Making deep RL work in practice an art form unto itself. It takes a lot of clever engineering! As a result, most
open-source implementations are large, clunky, and confusing. Otherwise, they are small, overly simplistic,
and can’t handle Atari. Frustrated by this, I ended up writing my own version called baby—a3 which
makes solving the Atari environments as simple as possible...but not simpler!

I’ve appended snapshots of the code below.

L github.com/greydanus/baby-a3c

W0 =~ on o) ke

[l el
=

=t b b b b et

BJ E
-

3

Baby Advantage Actor-Critic | 5am Greydanus | October 2817 | MIT License

Trom _ _future__ import print_function
import torch, os, gym, time, glob, argparse
import numpy as np

from scipy.signal import 1filter

from scipy.misc import imresize # preserves single-pixel inTo _unlike_ img = img[::2,::2]

import torch.nn as nn

from torch.autograd import Variable
import torch.nn.functional as F
import torch.multiprocessing as mp
os.environ['OMP_NUM_THREADS'] = '1'

parser = argparse.ArgumentParser{description=None)

parser.add_argument{'--env', default='Breakout-v@', type=str, help='gym environment')
parser.add_argument({'--processes', default=28, type=int, help='number of processes to train with')
parser.add_argument{'--render', default=False, type=bool, help='renders the atari environment')
parser.add_argument({'--test', default=False, type=bool, help='test mode sets Lr=@, chooses most likely actions')
parser.add_argument{'--1stm_steps', default=28, type=int, help='steps to train LS5TM over')
parser.add_argument{'--1r', default=le-4, type=float, help='learning rate')

parser.add_argument{'--seed', default=l, type=int, help='seed random # generators (for reproducibility)')
parser.add_argument{'--gamma', default=08.99, type=float, help='discount for gamma-discounted rewards')
parser.add_argument{'--tau', default=1.8, type=float, help='discount for generalized advantage estimation')
parser.add_argument{'--horizon', default=8.88, type=float, help='horizon for running averages')

args = parser.parse_args()

args.save_dir = '{}/'.format{args.env.lower{}) # keep the directory structure simple

if args.render: args.processes = 1 ; args.test = True ¥ render mode -= test mode w one process

if args.test: args.lr = @ # don't train In render mode

args.num_actions = gym.make{args.env).action_space.n # get the action space of this game
os.makedirs(args.save_dir) if not os.path.exists{args.save_dir) else None # make dir to save models etc.

discount = lambda x, gamma: 1filter([1],[1,-gammal,x[::-1]1)[::-1] # discounted rewards one liner
prepro = lambda img: imresize{img[35:195].mean{2), {(8@,80)).astype(np.float32).reshape(l,80,80)/255.

def printlog(args, s, end='\n', mode='a'):
print{s, end=end) ; f=open{args.save_dir+'log.txt',mode) ; f.write(s+'\n') ; f.close()

{5 T T I T o % o TS 1Y | W opd BRI B BRI BRI BRI BRI B
W00~ on LN o bR = W0 00~ o Un e R

i
=

5

L N N A A
5 000 - & Wk

5

3

LnununwLnenen
L = L I A Sy S

class MNPolicy(torch.nn.Module): # an actor-critic neural network

def

def

def

__init_ (self, channels, num_actions):

super{MNPolicy, self).__init_ ()

self.convl = nn.Conv2d(channels, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.convd = nn.Conv2d(32, 32, 3, stride=2, padding=1)

self.lstm = nn.LSTMCell{32 * 5 * 5, 256)

self.critic_linear, self.actor_linear = nn.Linear{256, 1), nn.Linear(256, num_actions)

forward{self, inputs):
inputs, (hx, cx) = inputs
% = F.elu{self.convl{inputs))

®x = F.elu{self.convZ(x))
x = F.eluf{self.conv3{x))
x = F.elu{self.convd(x))

hx, cx = self.lstm{x.view(-1, 32 %= 5 % 5), (hx, cx))
return self.critic_linear(hx), self.actor_linear(hx), (hx, cx)

try_load(self, save_dir):

paths = glob.glob{save_dir + 's.tar') ; step = @

if len{paths) = @:
ckpts = [int(s.split('.')[-2]) for s in paths]
ix = np.argmax{ckpts) ; step = ckpts[ix]
self.load _state_dict{torch.load{paths[ix]))

print{"\tno saved models") if step is @ else print("\tloaded model: {}".format{paths[ix]))

return step

class SharedAdam{torch.optim.Adam): # extend a pytorch optimizer so it shares grads across processes
def __init_ {self, params, lr=le-3, betas=(0.9, 0.999), eps=le-B, weight_decay=0):
super{Sharedfdam, self).__init_ {params, lr, betas, eps, weight_decay)
for group in self.param_groups:
for p in groupl['params']:
state = self.state[p]

state['shared_steps'], statel'step']l = torch.zeros{l).share_memory_{}, @
state['exp_avg'] = p.data.new().resize_as_{p.data).zero_{}.share_memory_()}
state['exp_avg_sg'l = p.data.new().resize_as_{p.data).zero_().share_memory_{)

def step(self, closure=None):
for group in self.param_groups:
for p in group['params']:
if p.grad is None: continue
self.statelp] ['shared_steps'] += 1
self.statelp] ['step'] = self.statelpl['shared_steps'1[@] - 1 # there's a "step += 1" later
super.step{closure)

torch.manual_seed{args.seed)
shared_model = NNPolicy({channels=1l, num_actions=args.num_actions).share_memory()
shared_optimizer = SharedAdam{shared_model.parameters(}, lr=args.lr)

info = {k : torch.DoubleTensor{[@]).share_memory_() for k in ['run_epr', 'run_loss', 'episodes', 'frames']}
info['frames'] += shared_model.try_load(args.save_dir)=le6
if int{info['frames'] [8]) == @: printloglargs,'', end='"', mode='w') # clear log file

def cost_func{values, logps, actions, rewards):
np_values = values.view{-1).data.numpy{)

generalized advantage estimation (g policy gradient method)

delta_t = np.asarray{rewards) + args.gamma % np_values[1l:] - np_values[:-1]
gae = discount{delta_t, args.gamma * args.tau)

logpys = logps.gather(l, Variable(actions).view{-1,1))

policy_loss = =(logpys.view{-1) * Variable{torch.Tensor{gae))).sum{}

12 loss over value estimator

rewards [-1] += args.gamma * np_values[-1]

discounted_r = discount{np.asarray{rewards), args.gamma)
discounted_r = Variable{torch.Tensor{discounted_r))
value_loss = .5 # {discounted_r - values[:-1,8]).pow{2).sum{)

entropy_loss = —{-logps * torch.exp{logps)).sum(]) # encourage lower entropy
return policy_loss + 8.5 * value_loss + B.81 + entropy_Lloss

def train{rank, args, info):
env = gym.make(args.env) # make a local (unshared) environment
env.seed{args.seed + rank) ; torch.manual_seed{args.seed + rank) # seed everything
model = MMPolicy{channels=1, num_actions=args.num_actions) # init a local (unshared) model
state = torch.Tensor{prepro{env.reset())) # get first state

start_time = last_disp_time = time.time()}
episode_length, epr, eploss, done =@, @, @, True # bookkeeping

while infol['frames'][@] <= 8e? or args.test: # openal baselines uses 48M frames...we'll use 88M
model. load_state_dict{shared_model.state_dict()) # sync with shared model

cx = Variable{torch.zeros(1l, 256)) if done else Variable{cx.data) # Istm memory vector
hx = Variable{torch.zeros{1l, 256)) if done else Variable{hx.data) # Ilstm activation vector
values, logps, actions, rewards = [1, [1, [1, [1 # save wvalues for computing gradientss

for step in range(args.lstm_steps):
episode_length += 1
value, logit, (hx, cx) = model{{Variable{state.view(1,1,80,80)), (hx, cx)))
logp = F.log_softmax{logit)

action = logp.max{l)[1].data if args.test else torch.exp{logp).multinomial{).datal@]
state, reward, done, _ = env.step{action.numpy()[8]}
if args.render: env.render{)

state = torch.Tensor{prepro{state)) ; epr += reward
reward = np.clip{reward, -1, 1) # reward
done = done or episode_length == led # keep agent from playing one episode too long

infol'frames'] += 1 ; num_frames = int{infol'frames'][8])

if num_frames % 2e6 == ©0: # save every 2M frames
printlogl{args, '‘n\t{:.@fIM frames: saved modelin'.format{num_frames/le6))
torch.save(shared_model.state_dict{), args.save_dir+'model.{:.@f}.tar'.format{num_frames/Lleé))

if done: # update shared data. maybe print info.
info['episodes'] += 1
interp = 1 if info['episodes'][8] = 1 else 1 - args.horizon
infol'run_epr']l.mul_{l-interp).add_{interp * epr)
infol'run_loss']l.mul_{1l-interp).add_{interp * eploss)

if rank ==0 and time.time() - last_disp_time > 6@: # print info ~ every minute
elapsed = time.strftime("%Hh %Mm %5s", time.gmtime(time.time{) - start_time))
printlog{args, 'time {}, episodes {:.8f}, frames {:.1fIM, run epr {:.2f}, run loss {:.2f}'
.format{elapsed, infol'episodes'][®], num_frames/le6, infol'run_epr'l[®], infol'run_loss'][e]))
last_disp_time = time.time()

episode_length, epr, eploss = @, @, @
state = torch.Tensor{prepro{env.reset{)))

values.append{value) ; logps.append{logp) ; actions.append{action) ; rewards.append{reward)

next_value = Variable{torch.zeros(1,1)) if done else model{{Variable(state.unsqueeze{®)), (hx, cx)))[@]
values.append{Variable{next_value.data))

loss = cost_func(torch.cat(values), torch.cat(logps), torch.cat{actions), np.asarray{rewards))
eploss += loss.data[@]

shared_optimizer.zero_grad{) ; loss.backward()
torch.nn.utils.clip_grad_norm{model.parameters{), 48)

for param, shared_param in zip{model.parameters{), shared_model.parameters({))
if shared_param.grad is Mene: shared_param._grad = param.grad # sync gradients with shared model
shared_optimizer.step{)

processes = []

for rank in range{args.processes):
p = mp.Process{target=train, args=({(rank, args, info))
p.start({) ; processes.append{p)

for p in processes:
p.join{)

	A3C in theory
	Policy Gradient Theorem
	REINFORCE
	Actor-critic
	Advantage actor-critic
	TD actor-critic

	A3C in practice

