
Mastering Atari with an Actor-Critic Model

Sam Greydanus
greydasa@oregonstate.edu

January 19, 2018

Abstract

Reinforcement Learning (RL) with deep neural networks is an exciting area of research, but training
a deep RL agent is difficult in practice. In this talk, I will introduce the theories and intuitions of the
(Asynchronous) Advantage Actor-Critic (A3C) model and walk through a 180-line implementation in
PyTorch. By the end of my talk, you should have the tools you need to train your own Atari agents.

1 A3C in theory
The idea behind reinforcement learning is that, given an agent which can interact with its environment, one
can learn a policy that maximizes the expected reward.

Figure 1: Overview of the RL framework. An agent in state st receives reward rt from the environment.
Then, it chooses some internal policy, π to choose action at, interacts with the environment, and receives the
next state/reward pair.

The idea is simple, but making it work in practice is tricky for a variety of reasons. In this talk, I’ll use
the Atari video games as example environments because they show off 1) why getting RL to work in practice
is tricky 2) why RL is a powerful and interesting tool.

1.1 Policy Gradient Theorem
Suppose we have a reward function f(x) and an agent that acts according to probability distribution p(x).
We would like to modify the distribution p(x) to maximize the expectation value Ex[f(x)]. Let’s assume
p(x) is differentiable and we can optimize it using gradient descent with respect to the expected reward.

1



Now all we need is to take the gradient of the expectation value:

∇θEx[f(x)] = ∇θ
∑
x

p(x)f(x) definition of expectation value (1)

=
∑
x

∇θp(x)f(x) apply gradient to each term (2)

=
∑
x

p(x)
∇θp(x)
p(x)

f(x) multiply by identity (3)

=
∑
x

p(x)∇θ log p(x)f(x) because ∇θ log z =
1

z
∇θz (4)

= Ex[∇θ log p(x)f(x)] this is the Policy Gradient Theorem (5)

This gives us the gradient of the expected reward. From now on, let’s start using πθ as our p(x) and
call it the agent’s policy. We’ll also refer to the expected reward This gives us the gradient of the expected
reward. From now on, let’s start using πθ as our p(x) and call it the agent’s policy. We’ll also refer to the
expected reward Ex[f(x)] as J .

1.2 REINFORCE
Many times, our agent will receive a reward not only because of the action at which it just took, but also
because of the actions which led it into the high-reward state. These actions consist of the set at−1, at−2, ....
We would like to give the agent credit for these actions, especially the ones which helped it obtain the final
reward.

There is more than one solution to this problem of credit assignment, but here’s one idea. As you get
closer to the high-reward state, the actions you take are exponentially more likely to have contributed to that
reward. If this is the case, then you should spread the reward you received backwards in time. We do this
via gamma-discounted rewards:

R =

∞∑
l=0

γlrt+1 (6)

Here, γ is a hyperparameter that we, as experimenters, get to set. It generally corresponds to how sparse
the rewards are. We will use γ = 0.99 for all experiments. We’ll use the value function V π(s) = Es[R] to
represent the value of the state. If we want to describe the value of taking a particular action once we’re in
this state, we use the Q function, Qπ(s, a) = R(s, a) + γV ∗(δ(s, a)).

Now our policy gradient looks like this:

∇J(θ) = Eπθ
[∇θ log πθ(s, a)Qπ(s, a)] (7)

Notice that this is just the gradient of a differentiable function, log πθ(s, a), times a scalar which we
know how to compute, Qπ(s, a). If we want to, we can go ahead and train an agent using gradient descent.
This, in fact, is an algorithm called REINFORCE and it works well in some simple cases. Sadly, it doesn’t
work great for Atari.

Note. Many times, people will clip raw rewards to [−1, 1] before gamma discounting. I tried training on
Atari without this step and all my models failed.

2



1.3 Actor-critic
The big remaining issue is that Qπ(s, a) is not a well-behaved function (especially for Atari and other
complex environments). It is sparse, high-variance, and totally unnormalized.

The actor-critic trick is meant to reduce the variance of the policy gradient. Instead of using Qπ(s, a)
directly, we learn an estimator,

Qw(s, a) ≈ Qπ(s, a) (8)

This estimate has much lower variance, leading to better results in practice. Now we have:

∇J(θ) ≈ Eπθ
[∇θ log πθ(s, a)Qw(s, a)] (9)

Question. Why not simply reduce variance by keeping a running estimate of batch statistics and then
using them to reduce variance? Wouldn’t this accomplish the same ”smoothing” objective?

Answer. I’m not sure. I tried doing this in practice and it did not work as well. I’ve seen other people do
this within batches, which seemed to help with REINFORCE.

1.4 Advantage actor-critic
Another way to reduce the variance is to subtract a baseline from the policy gradient. To see how this works,
imagine if our expected reward looked like this:

Eπθ
[log πθ(s, a)(f(s, a)− g(s))] (10)

I want to convince you that if g has zero mean, then it won’t change the expectation value:

Eπθ
[log πθ(s, a)g(s)] =

∑
s∈S

∑
a∈A

πθ(s, a)g(s) from eqn. 2 (11)

=
∑
s∈S

g(s)
∑
a∈A

πθ(s, a) (12)

=
∑
s∈S

g(s) because
∑
a∈A

πθ(s, a) = 1 (13)

=0 if g has zero mean (14)

Now, because E[A−B] = E[A]− E[B], we can conclude that

Eπθ
[log πθ(s, a)(f(s, a)− g(s))] = Eπθ

[log πθ(s, a)f(s, a)] (15)

People call this ”subtracting a baseline” and it is another way to reduce variance. A good baseline ends
up being the value function, V π(s). Recall that the advantage function is defined as

Aπ(s, a) =Qπ(s, a)− V π(s) (16)
≈Qw(s, a)− Vv(s) (17)

In equation 17 I’ve replaced the value function with a learned estimate, just as we did for the Q-values
in section 1.3. So, our new policy gradient becomes

∇J(θ) ≈ Eπθ
[∇θ log πθ(s, a)Aπ(s, a)] (18)

3



1.5 TD actor-critic
One remaining issue is that, if we want to estimate the advantage using a neural network, we need two
separate estimators, one for Qw(s, a) and one for Vv(s). There’s a better way: using the TD error, we can
estimate the advantage directly from Vv(s). Why? The TD error is an unbiased estimate of the advantage
function. Recall that the TD error is given by

δπθ = r + γV π(st+1)− V π(s) (19)

The expectation value of the TD error looks like:

E[δπθ |s, a] =E[r + γV π(st+1)|s, a]− V π(s) (20)
=Qπ(s, a)− V π(s) (21)
=Aπ(s, a) (22)

Thus, if we use TD error, we only need to train one value estimator to approximate the advantage. The
policy gradient for our final advantage actor-critic model looks like:

∇J(θ) ≈ Eπθ
[∇θ log πθ(s, a)δπθ ] (23)

This approximation produces gradients with much lower variance, giving a deep neural network enough
signal to learn to play Atari games very well.

2 A3C in practice
Making deep RL work in practice an art form unto itself. It takes a lot of clever engineering! As a result, most
open-source implementations are large, clunky, and confusing. Otherwise, they are small, overly simplistic,
and can’t handle Atari. Frustrated by this, I ended up writing my own version called baby-a3c1 which
makes solving the Atari environments as simple as possible...but not simpler!

I’ve appended snapshots of the code below.

1github.com/greydanus/baby-a3c

4



5



6



7


	A3C in theory
	Policy Gradient Theorem
	REINFORCE
	Actor-critic
	Advantage actor-critic
	TD actor-critic

	A3C in practice

