
Physics 24
Computational Project

Sam Greydanus

April 2015

1 Overview

The Schrodinger equation is an enormously effective model of atom-level interactions between
subatomic particles. Sometimes, though, discrete solutions to the equation are not possible as in
the case of the finite-depth quantum well. In this paper we present a computational model for
solving the finite-depth quantum well problem and investigate its properties.

2 Methods

2.1 Overview

This section is a summary of all Matlab functions used for the project. The functions themselves
are provided in the Appendix and as separate files in the same folder as this file.

2.2 Plotting ψ a single value of ε

To solve for a range of ψ values associated with a particular energy eigenvalue (referred to here
as ε), we first wrote a Matlab function which takes in a dimensionless position u an returns the
associated dimensionless potential V . For the finite well, the function simply returns 0 for any
value between −a/2 and a/2 and 1 for all other values. The advantage of writing this as a separate
function is that later we can add more complex potential equations (such as the at of the harmonic
oscillator) without changing other sections of code.

Next we solved for a range of ψ values on either side of an initial position. We defined constants
for the ground state solution as follows: ψ◦ = 1, φ◦ = 0, and β = 64. We used a default gridsize
of 2000 and solved for ψ values 5 dimensionless units in either direction from the initial position
of 0. Later, we turned many of these values into parameters for the function itself to make it
more general. Next, we implemented the two coupled differential equations given on page 3 of the
numerical project handout in a for loop. For each iteration of the loop, we solved for the next ψ
and φ values and saved them for use in the next iteration of the loop. In the actual iteration we
used two of these for-loops: one to solve for ψ values on the right side of the initial position and
one to solve for ψ values to the left. Finally, we plotted the resulting ψ function if the ”flag” input
parameter was set to 1 (indicating that the user wanted a plot).

The two Matlab functions described here are thoroughly commented and provided in the ap-
pendix. Their names are ’V’ and ’fstep’ respectively.

1

2.3 Optimizing ε

Searching for optimal ε values using the shooting method can be quite tedious when done
manually. To avoid this, we wrote two functions to assist us in finding optimal solutions. The first
function is called ”epsilonCost” and it returns a ”cost” value which measures how well a numerical
ψ function with a particular ε value approximates the real ψ function. In our case, the function that
diverges to ±∞ the most gradually should have the lowest cost. Following this line of reasoning, we
let our cost function return the maximum numerically-derived ψ value associated with test ε value.
Thus when our cost function is at a local minimum, we know that we have converged to a viable
eigenvalue.

Next, we wrote a function to optimize our cost function which we called ”minimizeEpsilon.”
This function initiates all the constants needed for the problem, creates a function handle for the
cost function (a function handle is a technique in Matlab which allows one to pass one function as
a parameter to another function), and then uses a built-in optimization function of Matlab called
”fminbnd.” This function simply searches a range of input values for a function and returns the
input value for which the output value is minimized.

The remainder of this function we devoted to plotting the cost function, debugging, and nor-
malization. Discussion of these features can be found in the following three subsections.

2.4 Plotting the cost function

Plotting the cost function is a simple matter of solving for cost values at many different points
and plotting them. Figures 1,4, and 7 show the cost functions for the ground, first excited, and
second excited states respectively. The blue circle on each of these figures is the result returned by
the ”fminbnd” function. Notice that these circles accurately represent solutions to local minima for
the cost function. These minima correspond to optimal energy values of the finite quantum well.

2.5 Normalization

To normalize, we computed a numerical integral of ψ2 over the domain u = [−1, 1], then multi-
plied our vector of ψ values by the inverse of the square root of this value. This adjusted the vector
of ψ values so that a numerical integral of |ψ∗ψ| for the domain u = [−1, 1] yielded 1. This process
was coded in Matlab and can be found in the Appendix.

2.6 Debugging

The debugging functionality allows us to plot functions of ψ for a candidate ε value beside
functions of ε± dx when dx is very small. If the ψ function generated by the candidate value of ε
diverges to infinity more slowly than the others, we can conclude that our ε value is accurate to the
level of ±dx.

2.7 Final note

Optimizing the cost function of ε was far less computationally expensive than plotting said
function. Having observed this, we decided to use substantially larger gridsizes when optimizing
ε so that we could achieve more precise estimates. For this reason, we broke ”minimizeEpsilon”
into two parts: optimization and display. The optimization section uses very large values for the

2

gridsize and very small values for du compared to the display section. For example, we optimized
the ground-state ε using a gridsize of 3000000 but plotted the cost function using a gridsize of 3000.

2.8 Other required discussion from the lab guide

We used values of 1 and 0 for ψ and φ respectively when solving for the ground state because,
when one refers to the ground state plot in the textbook, these are the values one finds. Parity
enables us to do this because the graph has even parity for the ground state and so the slope of ψ
should be 0 at the y axis when ψ has has continuous derivatives.

The solution is the ground state because the shape of the ground state ψ function takes this
form and because we chose the local minimum of our cost function which could be found closest to
0.

3 Results

3.1 Ground State

When solving for the local minimum which corresponds to the ground state of the system, we first
need to investigate the graph of the cost function (Figure 1). We see that there is a local minimum
at ε = 0.098028. Next, we verified this value by using the debugging code in ”minimizeEpsilon”
to graph ψ functions for ε ± dx where dx is very small. We suspect our value of ε to be accurate
to within four decimal places because our debugging tool showed that our value produced the ψ
function which diverged to infinity the most slowly for dx = 0.0001. The graph in Figure 3 shows
the graph of ψ after optimizing ε for the ground state.

Figure 1: Cost function for first excited state

3

(a) Below ε (b) Above ε

Figure 2: Graphs of ψ for values above and below the optimal ε

Figure 3: Numerically-derived plot of ψ for ε = 0.098028

3.2 First excited state

We used the same process as described for the ground state to solve for the first excited state.
We simply changed the initial values to ψ◦ = 0 and φ◦ = 1 before optimizing epsilon.

4

Figure 4: Cost function for first excited state

(a) Below ε (b) Above ε

Figure 5: Graphs of ψ for values above and below the optimal ε

5

Figure 6: Numerically-derived plot of ψ for ε = 0.38272

3.3 Second excited state

We used the same process as described for the ground state to solve for the second excited
state. We simply searched a different range of ε values (ε = [0.5, 1.0]). This yielded a different local
minimum which we believe corresponds to the second excited state.

6

Figure 7: Cost function for first excited state

(a) Below ε (b) Above ε

Figure 8: Graphs of ψ for values above and below the optimal ε

7

Figure 9: Numerically-derived plot of ψ for ε = 0.80785

3.4 Solving for ε > 1

Here we carry out problem 2 from ER appendix G. For values of ε > 1, the particle is free of
the well and does not have quantized energy levels. There are no preferred values for ε. The ψ
function oscillates about the x-axis as shown in Figure 10. One might notice that in Figure 10,
the oscillating function’s amplitude increases as it moves away from the y-axis in both directions.
This is due to numerical error; there should not be any change in amplitude. When we double the
gridsize to 8000, the increase in amplitude is much less visible as shown in figure 11.

8

Figure 10: Plot of ψ for ε > 0 (gridsize = 2000). Notice how it oscillates around the x-axis and increases
in amplitude as it moves away from the y-axis due to numerical error

Figure 11: Plot of ψ for ε > 0 (gridsize = 8000). Notice that the amplitude does not increase as rapidly
as it moves away from the y-axis.

9

3.5 Converting to real world values

First, recall the equation for V◦ and let the constants β = 64, ~ = 1.05457 × 10−34, m =
9.109× 10−31, and a = 100× 10−9. Then we have:

V◦ =
β~2

2ma2
= 3.91× 10−23J = 2.44× 10−4eV (1)

If we use a = 53× 10−12 (the radius of a hydrogen atom) instead, we find V◦ = 1.391× 10−16 =
868eV .

It is also possible to solve for a by rearranging that equation and letting the constants β = 64,
~ = 1.05457× 10−34, m = 9.109× 10−31, and V = 1eV = 6.24× 1018J

a =

√
β~2

2mV◦
= 4.938× 10−8m (2)

If we use V◦ = 13.6eV (the magnitude of the lowest energy state of hydrogen) instead, we find
a = 1.391× 10−16 = 1.339× 10−8m.

3.6 Quantum harmonic oscillator

The quantum harmonic oscillator potential is

V (x) =
C

2
x2 (3)

and the associated differential equation (taken from appendix I of Eisberg and Resnick) is:

d2ψ(u)

d2u
= −

(γ
α
− u2

)
ψ(u) (4)

Where γ = 2mE
~2 and α = 2πmω

~
Rearranging the equation in the same way as shown on the lab guide and letting β = V◦

~πω , we
have

d2ψ(u)

d2u
= −β[ε− V (u)]ψ(u) (5)

Such that V (u) = ~πω2

V◦

φ(ui+1) = φ(ui)−∆uβ[ε− V (u)]ψ(ui) (6)

ψ(ui+1) = ψ(ui)−∆uφ(ui) (7)

In light of these results, we decided not to change the coupled numerical differential equation for
ψ because it works the same for any potential V (u). Our value for β we chose according to the order
of magnitude of its constants. We solved for the ground, first excited, and second excited states of
the harmonic oscillator in the same way we did for the finite well. Our results were ε0 = 0.088387,
ε1 = 0.264777, and ε2 = 0.44145. The graphs and their associated cost functions are are follows:

10

(a) Cost function (b) Optimized ψ

Figure 12: Solving for ground state of ε

(a) Cost function (b) Optimized ψ

Figure 13: Solving for first excited state of ε

11

(a) Cost function (b) Optimized ψ

Figure 14: Solving for second excited state of ε

NOTE The following discussion is of dubious factual integrity. We would confirm this math
if we had more time, but time constraints leave us uncertain of its theoretical validity. That said,
we consider it an important enough result to include in this writeup.

Now we need to check to see if our results correspond to a real-world situation. Consider the
HCl molecule, where there is oscillation between the H and Cl atoms. Using ω = 2π8.66× 1013 and
~ = 1.05457× 10−34 we can solve for the ground energy state as follows:

E1 =
1

2
~ω = 2.87× 10−20J (8)

Now we can use the value of the second excited state ε we solved for numerically by working
backwards from dimensionless parameters and using the constants β = 64, ~ = 1.05457 × 10−34,
m = 1.67 × 10−27, and a = .13 × 10−9. The values for m and a are the mass of a proton and the
bond length of HCl respectively.

E1 =
β~2

2εma2
= 2.87× 10−20J (9)

We get the same energy value when we use the ε value we solved for numerically, meaning that
our answer is correct. One could do the same process for the first and second excited states of the
harmonic oscillator and find similar results.

4 Discussion

4.1 Alternate numerical solution

An alternate numerical solution to the finite quantum well would be to split the function ψ into
three parts: 1) an exponential function to the left of the well, 2) a trigonometric function inside the
well and 3) an exponential function to the right of the well. The two exponential functions would
be of the form

Ceαx (10)

12

The trigonometric would be of the form (for the ground state):

Dcos(kx) (11)

Next we could impose the boundary condition that the derivative of the left exponent be equal
to the derivative of the trigonometric function at the left wall of the well. Similarly, the derivative
of the right exponent should be equal to the derivative of the trigonometric function at the right
wall of the well. With these conditions and the original two equations we could relate k to α and
then use numerical methods to optimize three equations. The numerical optimization would be
feasible because we would be optimizing only one constant, having written the other constants in
terms of that constant.

5 Appendix

5.1 Code for shooting method

Figure 15: Cost function (set up for harmonic oscillator)

13

Figure 16: Numerical function for ψ part 1

14

Figure 17: Numerical function for ψ part 2

15

Figure 18: Numerical function for ψ part 2

16

5.2 Code for optimization of shooting method

Figure 19: Cost function for finding ψ of best fit

17

Figure 20: Code for minimizing cost function and controlling all the other functions

18

Figure 21: Code for minimizing cost function and controlling all the other functions

19

Figure 22: Code for minimizing cost function and controlling all the other functions

20

Figure 23: Code for minimizing cost function and controlling all the other functions

21

5.3 Code for normalization

Figure 24: Code for finding a normalization constant

22

