Physics 24
Computational Project

Sam Greydanus

April 2015

1 Overview

The Schrodinger equation is an enormously effective model of atom-level interactions between
subatomic particles. Sometimes, though, discrete solutions to the equation are not possible as in
the case of the finite-depth quantum well. In this paper we present a computational model for
solving the finite-depth quantum well problem and investigate its properties.

2 Methods

2.1 Overview

This section is a summary of all Matlab functions used for the project. The functions themselves
are provided in the Appendix and as separate files in the same folder as this file.

2.2 Plotting ¢ a single value of ¢

To solve for a range of 1) values associated with a particular energy eigenvalue (referred to here
as €), we first wrote a Matlab function which takes in a dimensionless position u an returns the
associated dimensionless potential V. For the finite well, the function simply returns 0 for any
value between —a/2 and a/2 and 1 for all other values. The advantage of writing this as a separate
function is that later we can add more complex potential equations (such as the at of the harmonic
oscillator) without changing other sections of code.

Next we solved for a range of 1/ values on either side of an initial position. We defined constants
for the ground state solution as follows: ¥, = 1, ¢, = 0, and [= 64. We used a default gridsize
of 2000 and solved for ¢ values 5 dimensionless units in either direction from the initial position
of 0. Later, we turned many of these values into parameters for the function itself to make it
more general. Next, we implemented the two coupled differential equations given on page 3 of the
numerical project handout in a for loop. For each iteration of the loop, we solved for the next
and ¢ values and saved them for use in the next iteration of the loop. In the actual iteration we
used two of these for-loops: one to solve for ¢ values on the right side of the initial position and
one to solve for ¢ values to the left. Finally, we plotted the resulting v function if the "flag” input
parameter was set to 1 (indicating that the user wanted a plot).

The two Matlab functions described here are thoroughly commented and provided in the ap-
pendix. Their names are "V’ and ’fstep’ respectively.

2.3 Optimizing ¢

Searching for optimal e values using the shooting method can be quite tedious when done
manually. To avoid this, we wrote two functions to assist us in finding optimal solutions. The first
function is called ”epsilonCost” and it returns a ”cost” value which measures how well a numerical
1 function with a particular € value approximates the real ¢) function. In our case, the function that
diverges to +00 the most gradually should have the lowest cost. Following this line of reasoning, we
let our cost function return the maximum numerically-derived v value associated with test e value.
Thus when our cost function is at a local minimum, we know that we have converged to a viable
eigenvalue.

Next, we wrote a function to optimize our cost function which we called ”minimizeEpsilon.”
This function initiates all the constants needed for the problem, creates a function handle for the
cost function (a function handle is a technique in Matlab which allows one to pass one function as
a parameter to another function), and then uses a built-in optimization function of Matlab called
"fminbnd.” This function simply searches a range of input values for a function and returns the
input value for which the output value is minimized.

The remainder of this function we devoted to plotting the cost function, debugging, and nor-
malization. Discussion of these features can be found in the following three subsections.

2.4 Plotting the cost function

Plotting the cost function is a simple matter of solving for cost values at many different points
and plotting them. Figures 1,4, and 7 show the cost functions for the ground, first excited, and
second excited states respectively. The blue circle on each of these figures is the result returned by
the ”fminbnd” function. Notice that these circles accurately represent solutions to local minima for
the cost function. These minima correspond to optimal energy values of the finite quantum well.

2.5 Normalization

To normalize, we computed a numerical integral of 1) over the domain u = [—1, 1], then multi-
plied our vector of 1 values by the inverse of the square root of this value. This adjusted the vector
of 1 values so that a numerical integral of |)*¢| for the domain u = [—1, 1] yielded 1. This process
was coded in Matlab and can be found in the Appendix.

2.6 Debugging

The debugging functionality allows us to plot functions of ¢ for a candidate e value beside
functions of € + dxr when dx is very small. If the v function generated by the candidate value of €
diverges to infinity more slowly than the others, we can conclude that our € value is accurate to the
level of +dx.

2.7 Final note

Optimizing the cost function of € was far less computationally expensive than plotting said
function. Having observed this, we decided to use substantially larger gridsizes when optimizing
€ so that we could achieve more precise estimates. For this reason, we broke ”"minimizeEpsilon”
into two parts: optimization and display. The optimization section uses very large values for the

gridsize and very small values for du compared to the display section. For example, we optimized
the ground-state € using a gridsize of 3000000 but plotted the cost function using a gridsize of 3000.

2.8 Other required discussion from the lab guide

We used values of 1 and 0 for v and ¢ respectively when solving for the ground state because,
when one refers to the ground state plot in the textbook, these are the values one finds. Parity
enables us to do this because the graph has even parity for the ground state and so the slope of ¥
should be 0 at the y axis when v has has continuous derivatives.

The solution is the ground state because the shape of the ground state 1 function takes this
form and because we chose the local minimum of our cost function which could be found closest to
0.

3 Results

3.1 Ground State

When solving for the local minimum which corresponds to the ground state of the system, we first
need to investigate the graph of the cost function (Figure 1). We see that there is a local minimum
at € = 0.098028. Next, we verified this value by using the debugging code in ”minimizeEpsilon”
to graph v functions for € £ dz where dx is very small. We suspect our value of € to be accurate
to within four decimal places because our debugging tool showed that our value produced the
function which diverged to infinity the most slowly for dz = 0.0001. The graph in Figure 3 shows
the graph of ¢ after optimizing e for the ground state.

- 10" Mumerical error as a function of energy state
al —
-
.a""
~
KRS
E 3t
i3]
[=}
2
e 2D}
g
&
i
5 2R
|
E
S1sf
1k
05k
.:| o i i
0.09 0.1 0.13 0.14 0.15

0.1) 0.12
Dimensionless energy value E/N

Figure 1: Cost function for first excited state

W(u) using epsilon =0.098

W{u) using epsilon =0.099

05

MNumerical estimation of T
Mumerical estimation of T

-0.5 a 05 -05 il 05
Position (dimensionless units) Paosition (dimensionless units)

(a) Below € (b) Above €

Figure 2: Graphs of ¢ for values above and below the optimal e

Wr(u) using epsilon =0.098028

Mumerical estimation of T

15 1 1 1 1 L

-0.5 i 05
Position (dimensicnless units)
Figure 3: Numerically-derived plot of 3 for e = 0.098028

3.2 First excited state

We used the same process as described for the ground state to solve for the first excited state.
We simply changed the initial values to ¥, = 0 and ¢, = 1 before optimizing epsilon.

25

«10" Numerical error as a function of energy state

Normalized error functicn

i |
03 035 04 0.45
Dimensionless energy value EN

Figure 4: Cost function for first excited state

¥(u) using epsilon =0.38
T T T

Numerical estimation of &

(u) using epsilon =0.39
T T T

Numerical estimation of &

L . L L 25 L L . L L
05 @ 05 E
Position (dimensionless units)

-0.5 i 05
Paosition (dimensionless units)
(a) Below € (b) Above €

Figure 5: Graphs of ¢ for values above and below the optimal e

Fu) using epsilon =0.38272

7

Mumerical estimation of T
=
i
/
s

=]
tn

-0.5 a i}
Position (dimensicnless units)
Figure 6: Numerically-derived plot of ¢ for e = 0.38272

3.3 Second excited state

We used the same process as described for the ground state to solve for the second excited
state. We simply searched a different range of € values (¢ = [0.5,1.0]). This yielded a different local
minimum which we believe corresponds to the second excited state.

%108 Mumerical error as a function of energy state

Mormalized ermor function

i i i i
0.73 08 " 081 0.82 0.83 0.84 0.85
Dimensionless energy value EN

Figure 7: Cost function for first excited state

T{u) using epsilon =0.8
T T T

Numerical estimation of &

(u) using epsilon =0.83
T T T

Numerical estimation of T

-0.5 a 05 -0.5 a 05
Position (dimensionless units) Paosition (dimensionless units)

(a) Below € (b) Above €

Figure 8: Graphs of ¢ for values above and below the optimal €

. Fu) using epsilon =0.80785

=]
tn
T

g \.

5 \

E e I|I —
E oL '| - -

g mxx\ |III ~

: N \

=05

i i
05 o 05 1 15
Position (dimensicnless units)

Figure 9: Numerically-derived plot of ¢ for e = 0.80785

3.4 Solving for ¢ > 1

Here we carry out problem 2 from ER appendix G. For values of € > 1, the particle is free of
the well and does not have quantized energy levels. There are no preferred values for €. The v
function oscillates about the x-axis as shown in Figure 10. One might notice that in Figure 10,
the oscillating function’s amplitude increases as it moves away from the y-axis in both directions.
This is due to numerical error; there should not be any change in amplitude. When we double the
gridsize to 8000, the increase in amplitude is much less visible as shown in figure 11.

05

Tr{u) using epsilon =1.45

Numerical estimation of T

05 i i i i i i i
=3

=1 a 1 2 3 4 5
Position (dimensicnless units)

Figure 10: Plot of ¢ for e > 0 (gridsize = 2000). Notice how it oscillates around the x-axis and increases
in amplitude as it moves away from the y-axis due to numerical error

05 'I--:u? using a.psilnn -.1 45

MNumerical estimation of T

A5 i i i i i i L
=3 2 a 4 i

=1 a 1
Position (dimensicnless units)

Figure 11: Plot of ¢ for € > 0 (gridsize = 8000). Notice that the amplitude does not increase as rapidly
as it moves away from the y-axis.

3.5 Converting to real world values

First, recall the equation for V, and let the constants = 64, h = 1.05457 x 1073, m =
9.109 x 1073!, and @ = 100 x 10~°. Then we have:

_ B

2ma?

=391 x 1072 =244 x 10 eV (1)

o

If we use a = 53 x 107!2 (the radius of a hydrogen atom) instead, we find V, = 1.391 x 10716 =
868eV .

It is also possible to solve for a by rearranging that equation and letting the constants 5 = 64,
h=1.05457 x 10734, m = 9.109 x 1073}, and V = 1leV = 6.24 x 10'8J

_ | s
a= A 4.938 x 10~°m (2)

If we use V, = 13.6eV (the magnitude of the lowest energy state of hydrogen) instead, we find
a=1.391 x 10716 =1.339 x 10~®m.

3.6 Quantum harmonic oscillator

The quantum harmonic oscillator potential is

Vi) = Sa?)
and the associated differential equation (taken from appendix I of Eisberg and Resnick) is:
d*(u) v
o = () e @
Where v = QQEE and a = 2”%
Rearranging the equation in the same way as shown on the lab guide and letting 8 = EZZ , We
have
2
T e~ Vv)
Such that V' (u) = -
P(uiv1) = d(u;) — Auple — V(u)](u;) (6)
Y(uir1) = Y (u;) — Aug(u;) (7)

In light of these results, we decided not to change the coupled numerical differential equation for
1 because it works the same for any potential V' (u). Our value for g we chose according to the order
of magnitude of its constants. We solved for the ground, first excited, and second excited states of
the harmonic oscillator in the same way we did for the finite well. Our results were ¢y = 0.088387,
€1 = 0.264777, and €5 = 0.44145. The graphs and their associated cost functions are are follows:

10

Normalized error function

Numerical error as a function of energy state
T

Mumerical estimation of T

W({u) using epsilon =0.088385

=05 il 05
Paosition (dimensionless units)

(b) Optimized v

Figure 12: Solving for ground state of €

T T T
[
5
=
k]
=]
e
24
g
[
2
B3
E}
=
H
1
0 . L i . s . L .
008 0081 0082 0083 0084 0085 0086 007 0O0E8 0089 009
Dimensicnless energy value E/V
(a) Cost function
5 x10% Numerical error as a function of energy state
T T
25
2}
15 -
1k
05
0 . .
0.05 0.1

015 02 0.25 03
Dimensicnless anergy value E/V

(a) Cost function

Numerical estimation of T

W(u) using epsilon =0.26478

-0.5 a 05
Position (dimensionless units)

(b) Optimized v

Figure 13: Solving for first excited state of €

11

<102 Numerical error as a function of energy state Wr(u) using epsilon =0.44145

~. —
™,
08 \
35
\ oo \
R \
\ 04 \‘
s =
E Z \
G2s 2 \
g § 02
bl =1 \
=] E | -
S 2 ﬁ 0 \
g f |
B 2
. - \
£ 15 _— — _——hﬁﬂ__i- 5 '.‘
-4 - Z o4 “‘
1 .
06
05 4
08
L] 1
04 0.45 05 0.55 15 1 -05 0 05 1 15
Dimensionless energy value E/V Paosition (dimensionless units)
(a) Cost function (b) Optimized 1)

Figure 14: Solving for second excited state of €

NOTE The following discussion is of dubious factual integrity. We would confirm this math
if we had more time, but time constraints leave us uncertain of its theoretical validity. That said,
we consider it an important enough result to include in this writeup.

Now we need to check to see if our results correspond to a real-world situation. Consider the
HCI molecule, where there is oscillation between the H and Cl atoms. Using w = 278.66 x 10'® and
h = 1.05457 x 1073* we can solve for the ground energy state as follows:

1
B, = §hw =287 x107%J (8)

Now we can use the value of the second excited state ¢ we solved for numerically by working
backwards from dimensionless parameters and using the constants 8 = 64, h = 1.05457 x 10734,
m = 1.67 x 10727, and a = .13 x 1079. The values for m and a are the mass of a proton and the
bond length of HCI respectively.

2
E, = pr
2ema?
We get the same energy value when we use the € value we solved for numerically, meaning that
our answer is correct. One could do the same process for the first and second excited states of the
harmonic oscillator and find similar results.

=287 x107%J 9)

4 Discussion

4.1 Alternate numerical solution

An alternate numerical solution to the finite quantum well would be to split the function 1 into
three parts: 1) an exponential function to the left of the well, 2) a trigonometric function inside the
well and 3) an exponential function to the right of the well. The two exponential functions would
be of the form

Ce (10)

12

The trigonometric would be of the form (for the ground state):
Dcos(kx) (11)

Next we could impose the boundary condition that the derivative of the left exponent be equal
to the derivative of the trigonometric function at the left wall of the well. Similarly, the derivative
of the right exponent should be equal to the derivative of the trigonometric function at the right
wall of the well. With these conditions and the original two equations we could relate k to a and
then use numerical methods to optimize three equations. The numerical optimization would be
feasible because we would be optimizing only one constant, having written the other constants in
terms of that constant.

5 Appendix

5.1 Code for shooting method

1 function [V1 =Vi{ x }

2z %V A functlon which defines the potential energy of a 1D system
3 % Vix) where x is position and V is dimensionless energy units
4

5 %V =8; %V is zero in the well

il % if abs(x) = 1/2 % if x is outside the well, it goes to 1

7 £ V = 1;

8 % end

9

16 - Vo= 1/2#x"2;

11

12

13 - end

14

15

Figure 15: Cost function (set up for harmonic oscillator)

13

W 00] O WN B L) R e

O T N o B B o B B B B e e e el e el el i =
L=t S B e I P S Y N

EHMnctiun [psi, u]l = fstep(psi_init, phi_init, epsilon, du, gridsize, flag,
-1%FSTEP Solves numerically for a set of psi values

% Numerical derivative formula taken from the pdf handout implemented on

- % on lines 29 and 3@

% define default parameters for depugging
if nargin == @,

psi_init = 8;

phi_init = 1;

epsilon = 1.5;

gridsize = 20088;

du = 1.5/gridsize;

flag = 1;

fnorm = normalizeEig(epsilon, psi_init, phi_init, du, gridsize);
elseif nargin == 5,

flag = 8;

fnorm = 1;
end

% initialize constants
u_init = @;
beta = 64;

% create a vector of possible position values (where u is the dimensionless
% variable which represents x/x@
u = [u_init = du * (gridsize = 1} : ...

du : u_init + du = (gridsize - 1)1;

%set up a vector which we will fill with phi values {(using phi@ as our
smiddle wvalue

Figure 16: Numerical function for v part 1

14

31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
5@
51
52
53
54
55
56
57
38
59
6@
61
b2
63

65
66

phi = zeros(1l, 2Zxgridsize - 1};
philgridsize) = phi_init;

smiddle value)
psi = zeros(l, Zxgridsize - 1};
psilgridsize) = psi_init;

L for i = gridsize:2=gridsize - 2,

L for i = gridsize:=1:2,

psif{i - 1}
-end

psi = psi=fnorm;

if flag == 1,
plot{u, psi);

end

title{strcat({’'\Psi(u) using epsilon =
xlabel{'Position (dimensionless units)');
ylabel{ 'Mumerical estimation of “Psi'};

%set up a vector which we will fill with psi values (using psi@ as our

%apply the numerical deriwvative formula given in the handout and solve for

%all the values of psi and phi to the =®right+ of our initial wvalues

phi(i + 1) = phi{i) = du % beta % (epsilon = V(u(i))) = psi(i);
psi(i + 1) = psi(i) + du % phi(i);

% phi(i + 1) = phi{i) - du % (beta / alpha - V(u{i))) = psi(i);
% psi{i + 1) = psi({i) + du = phi(i);
-end

%apply the numerical deriwvative formula given in the handout and solve for
%all the values of psi and phi to the #®left+ of our initial values

phi(i = 1) = phi{i) + du % beta % (epsilon - V(u(i))) =* psi(i);
psi(i) = du * phi(i);

%if the flag (t/f) tells us to plot our result, we plot our result

, num2striepsilon)));

Figure 17: Numerical function for v part 2

15

31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
5@
51
52
53
54
55
56
57
38
59
6@
61
b2
63

65
66

phi = zeros(1l, 2Zxgridsize - 1};
philgridsize) = phi_init;

smiddle value)
psi = zeros(l, Zxgridsize - 1};
psilgridsize) = psi_init;

L for i = gridsize:2=gridsize - 2,

L for i = gridsize:=1:2,

psif{i - 1}
-end

psi = psi=fnorm;

if flag == 1,
plot{u, psi);

end

title{strcat({’'\Psi(u) using epsilon =
xlabel{'Position (dimensionless units)');
ylabel{ 'Mumerical estimation of “Psi'};

%set up a vector which we will fill with psi values (using psi@ as our

%apply the numerical deriwvative formula given in the handout and solve for

%all the values of psi and phi to the =®right+ of our initial wvalues

phi(i + 1) = phi{i) = du % beta % (epsilon = V(u(i))) = psi(i);
psi(i + 1) = psi(i) + du % phi(i);

% phi(i + 1) = phi{i) - du % (beta / alpha - V(u{i))) = psi(i);
% psi{i + 1) = psi({i) + du = phi(i);
-end

%apply the numerical deriwvative formula given in the handout and solve for
%all the values of psi and phi to the #®left+ of our initial values

phi(i = 1) = phi{i) + du % beta % (epsilon - V(u(i))) =* psi(i);
psi(i) = du * phi(i);

%if the flag (t/f) tells us to plot our result, we plot our result

, num2striepsilon)));

Figure 18: Numerical function for v part 2

16

5.2 Code for optimization of shooting method

1 E}Functiun [cost 1 = epsilonCost{ e, gridsize, du, psi_init, phi_init, opt)
2 -1 %EPSILONCOST Returns a number indicating how good our choice of epsilon
3 *was. Lower is better

4 % This function returns the maximum value over the absolute value of
5 -% a range of numerically-derived \Psi values

B

7 % %get a set of psi values for a given epsilon and gridsize

8- psi = fstep(psi_init, phi_init, e, du, gridsize);

9

10 %get "cost" value which depends on how far the psi function deviates from
11 %zero outside of the well 1) at its maximum and 2} on average. These
12 Smeasurements are both useful, but in different circumstances

13 - if {opt == @)

14 - cost = max({abs(psi));

15 - else

16 - cost= numIntegralidu, abs{psi).”2);

17 - end

18

19

20 TR e e s %s% HELPER FUNCTIONS:

21

22 %this function performs a numerical integral for some set of y wvalues
23 sseparated by a constant dx

24 =] function [areal = numIntegral{dx, y)

15 = area = @;

26 - O for index = 1:lengthiy)

i = area = area + yl{index) % dx;

28 - - end

29 - - end

30

31 - - end

32

33

Figure 19: Cost function for finding 1 of best fit

17

[V I R = I R S Y [L

L o T L I I e B I B R R R R =
== i S Y N e O P Y Ny gy =

function [1 = minimizeEpsilon(}
1 %MINIMIZEEPSILOM Solve for the lowest walue of epsilon within a range of
%possible epsilon values
% Use a built-in Matlab function to solve for a lecal minimum in the cost
% function for epsilon

%initialize constants and settings

debugGridsize = 200008; %use for less computationally expensive routines
debugGraphRange = 5; %use for less computationally expensive routines
gridsize = 3@88@; %use for more computationally expensive routines
costFunctionRange = 5; %use for more computationally expensive routines
energyGraphRange = 1.5; %use for routines which display final psi

du = costFunctionRange/debugGridsize;

psi_inmit = 1;

phi_init = 8;

dx = 8.8081; %this is used later for debugging/fine tuning with graphs

el = .3;

e2 = .5;
displayMode = 1;
Sground: 8.098828
sTirst: B.382721
%second: @.887892
Sthird: 1.451748

screate function handle for cost function
fun = @{x)epsilonCost(x, debugGridsize, du, psi_init, phi_init, 1);

suse efficient built-in Matlab solver to find a minimum wvalue

Figure 20: Code for minimizing cost function and controlling all the other functions

18

3
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
5@
51
52
53
54
55
56
57
58
59
6@

% options = optimoptions(’'fminbnd’,'TolX",'8');
minx = fminbnd{fun,el,e2);

disp('Optimal epsilon value % 18@:°);
minx#x180@ %we do this because it shows us more decimal places

if (displayMode), %if we are displaying our findings

% decrease the gridsize for computational efficiency
du = costFunctionRange/gridsize;
fun = @(x)epsilonCost(x, gridsize, du, psi_init, phi_init, @);

%now we need to present our findings with a graph, so we get data
epsilon = zeros({l,gridsize);
eCost = zeros(l,gridsize);
for i = 1l:gridsize,
epsilon{i) = el + (eZ-el)=xi/gridsize;
eCost(i) = funl{epsilon(i}));
end

%plot cost function with the minumim we found
plot{epsilon, eCost);

hold on;

plot{minx, fun{minx}), 'ko');

title('Mumerical error as a function of energy state');
xlabel{'Dimensionless energy value E/V'};

ylabel{ 'Normalized error function'};

%plot the actual energy level we've solved for:
figure(2)

Figure 21: Code for minimizing cost function and controlling all the other functions

19

61
62
63

65
66
67
63
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
a7
88
89
9@

7

%change the range of the function so that our graph 1s more pretty
du = energyGraphRange/gridsize;

%get an array pf psi values

psi = fstep({ psi_init, phi_init, minx, du, gridsize);

%Hnormalize by a constant factor, fnorm

fnorm = normalizeEig{minx, psi_init, phi_init, du, gridsize);

psi = psixfnorm;

% check normalization
disp({'Making sure normalization was successful:'};
numIntegralidu, abs{psi).~”2)

%a plot comes from this function because we pass in a flag=1l parameter

%which tells the subroutine to plot its result

fstepl psi_init, phi_init, minx, du, gridsize, 1, fnorm);

else

%this snippet of code lets me make sure that there are not better

%eigenvalues in the neighborhood of the one I've solved. IT the

%black lines are on either side of the red line diverge to infinity

%more rapidly thanm the red line, then I know that I have converged to

%a local minimum. Think of it as a debugging tool

du = debugGraphRange/debugGridsize;

figure(2);

psi = fstep(psi_init, phi_init, minx, du, debugGridsize)=*...
normalizeEig{minx, psi_init, phi_init, du, gridsize);

plot{psi, 'k=");

hold on;
for i=1:2,

Figure 22: Code for minimizing cost function and controlling all the other functions

20

91
g2
93

95

96

97

98

99
104
181
182
183
104
185
1086
1a7
10838
169
118
111
112
113
114
115

pause;

psi = fstep(psi_init, phi_init, minx + ixdx, du, debugGridsize)#...
normalizeEig{minx, psi_init, phi_init, du, gridsize);

plotipsi, 'r-"J;

end
for i=1:2,
pause;
psi = fstep(psi_init, phi_inmit, minx - ixdx, du, debugGridsize)=...
normalizeEig{minx, psi_imit, phi_init, du, gridsize);
ploti{psi, 'r="J);
end

end
S EE S ST EE%%%% HELPER FUNCTIONS:

%this function performs a numerical integral for some set of y walues
%separated by a constant dx
function [areal = numIntegralldx, y)
area = @;
for index = 1:lengthiy)
area = area + y{index) * dx;
end
end
end

Figure 23: Code for minimizing cost function and controlling all the other functions

21

5.3 Code for normalization

Eﬂﬁunctiun [A1 = normalizeEig{ eigV, psi_init, phi_init, du, gridsize)}
-1 SMORMALIZEEIG This function estimates the normalization constant for a
-%numericall-computed psi function using numerical integration

if nargin == @,
psi_init = 1;
phi_init = 8;
eigV = 8.1;
gridsize = 300008;
du = 1/30000;

end

%get a set of psi wvalues for a given epsilon and gridsize
psi = fstep(psi_init, phi_init, eigV, du, gridsize);

%estimate the area under the probability function curve using numerical
sintegration

cost = numIntegral(du, abs(psi).”2);

%To make this area 1, we set the constant to the inverse of that area
A = 1/sgrticost);

e EBEEH S EHE BB HSEH%%%S HELPER FUMCTIONS:

%this function performs a numerical integral for some set of y walues
sseparated by a constant dx

= function [areal = numIntegral{dx, y)
area = B;
= for index = 1:length(y)

area = area + ylindex) = dx;
- end
2 end

- end

Figure 24: Code for finding a normalization constant

22

