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Figure 1. Total Energy of Tier 1, 2, and 3 (E,J, and L in red, blue, and green.) Figure 2. Total KE and PE of Tree (K1+K2+K3 in blue, P1+P2+P3 in red.)
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Phase Space (JavaScript model)
1. Tree obeys fractal structure (above)
2. Wind force varies sinusoidally
3. Physical properties diminish by scaling factor f at 

each tier
a. Branch length
b. rotational restoring constant k
c. Radius

4. Rotational restoring k >> translational restoring k
5. Branches emerge from nodes at branching angles 

(+/-) π/6
6. Wind force acts on nodes by product with diameter

Energy Distribution
1. Properties 1 and 2 above
2. Branches only experience small oscillations
3. Branching angles are close to vertical

Previous models
1. Assumed tree as cantilever tapered beam
2. End mass assumed as crown of tree (branches + 

leaves)
3. Model derived was:
4.

a. with Young’s Modulus (E), second moment of 
inertia(I), frontal area exposed (A), density of 
tree (ρ), density of crown (ρc), area of crown 
(Ac), and force due to wind on the beam per 
unit length (f)

Wind-induced oscillations of a fractal tree are an 
interesting topic of study because the system contains 
many nonlinear interactions. For this system, we consider 
the different levels of the branches and the different 
oscillations that can occur as a result of sinusoidal wind 
forces. We examine two nonlinear models to investigate 
the effect of structural nonlinearities at various nodes 
(branches) of the fractal tree.

While the influence of various system parameters such 
as tree’s age, taper and slenderness ratio on the tree 
oscillations would be fantastic things to study, given our 
limited knowledge of applied methodologies, we focus on 
a simplified model. Additionally we note that, in its 
unperturbed state, the branches of the fractal tree in the 
same branch level are equilateral to one another and are 
always 60 degrees (π/3 radians) apart from one another. 
In its perturbed state, the fractal tree will have branches 
oscillating about this prefered angle.

In 1974, Papesh developed a windthrow model, 
referring to tree uprooting due to turbulent winds, using 
the natural frequency ν= Αω cos(ωt) where ν is the 
velocity of the wind, ω is the frequency of the wind, and Α 
is the amplitude of the wind gust. He arrived at: 

Through this, Papesh predicted the velocity at which 
windthrow would occur. However, the model is basic in 
nature and does not take the crown into account as a 
separate mass.

In 1994, Gardiner derived this model assuming the 
tree to be a damped harmonic oscillator with the tree to be 
a beam with an end mass for the crown while neglecting 
the mass of the stem. He gave the equation of motion as 
follows:

It was found that this model predicted displacement close 
to the measured values for frequency below the natural 
frequency of a tree. However, it did not predict accurate 
responses for frequencies higher than the resonant 
frequency.

In 1998, Kerzenmacher and Gardiner decided to work 
together and divide the tree into smaller segments, each 
with mass, stiffness, and damping parameter. These 
segments were then joined together to set up a whole 
system which resulted in a set of differential equations 
which could be written as follows:

where m, c, and k are ΝxΝ matrices and y is the vector 
displacement. A transfer function was calculated by 
solving the equations that were then used to calculate the 
tree’s response when subject to wind forces. This model 
predicted the deflections well at the top of the tree but 
failed to do so at lower heights of the tree at frequencies 
above the resonant frequency of the tree.

Our analytical approach solves the Kerzenmacher and 
Gardiner equation as shown in section 10.2 of Kleppner 
and Kolenkow’s Introduction to Mechanics. The solution is 
of the form:

Where ‘b’ is interpreted as the damping coefficient and k 
is the spring constant.

Wavelength: 800 iterations (leftmost nodes) Wavelength=800 (central nodes)Wavelength: 300 iterations Wavelength: 100 iterations

Phase space plots reveal more chaotic behavior for 
short wavelengths. When cycles in phase space 
converge, their shapes vary according to location in the 
tree. We were surprised to see “inner loop” patterns in 
the phase space plots for most of the center nodes.
 

For energy analysis, we note that total energy loss in 
a tier is steepest when KE peaks. A tier experiences no 
energy loss when PE peaks and KE=0. In Figure 2 we 
observe the total PE and KE of the tree, as well as the 
total energy of the tree. Total energy falls faster as KE 
rises in Figure 2.
 

Future work could involve extending our model to 
three dimensions and making a leaf vs no leaf model to 
compare wind force on a deciduous tree in winter and 
summer.

Above: data was collected from the nodes with blue circles 
(one at each tier) for 10 cycles. This system quickly 
converges to a periodic cycle. Nodes higher in the tree 
have more irregular phase spaces

An analysis of the centermost nodes in the tree shows that 
they have different phase spaces from the leftmost nodes. 
The inner loop in the y phase space plots is an interesting 
behavior which emerges at nearly very tier.

For a shorter wavelength the 
system takes longer to 
converge. Also, the periodic 
cycles vary more by tier

The system’s behavior is 
most chaotic for very short 
wavelengths

Figure 1 and Figure 2 (as well as the equations beneath them) 
represent two different methods of modeling energy. Figure 1 
plots Eq E, J, and L, which are of the form E=.5mv^2+.5kx^2. 
These equations represent the PE+KE for each tier. We use M
(t1,2,3) as the masses because the effective mass at the end of 
each branch is the sum of all the mass above it. The x and dx/dt 
is also calculated using M(t1,2,3). The sum of the three resulting 
equations is theoretical and in fact actually equal to the sum of 
the total PE and KE plotted in Figure 2. 

Figure 2 plots Eq K(1,2,3) and P(1,2,3) as well as the total energy. Eq K(1,2,3) are 
calculated by taking the velocity of the M(t1,2,3) systems and the mass of individual 
nodes, while Eq P(1,2,3) are calculated the same way as in E, J, and L. In this method 
we examine the KE of individual nodes in isolation and we can gain a picture of the total 
KE of the system by summing these nodes. Because each node in K(1,2,3) has KE 
contributions from more than one tier, cross-comparison of the methods displayed in 
Figure 1 and Figure 2 is difficult. The KE of E is equal to (1st term K1) + (2nd term K2) + 
(3rd term K3). The KE of J is (1st term K2) + (2rd term K3). The KE of L is (1st term K3). 

An unperturbed snapshot 
of our JavaScript fractal 
model

Interactive demo: https://greydanus.github.io/fractal_tree/index.html


